Patents by Inventor Joseph Seeger

Joseph Seeger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10794702
    Abstract: A MEMS gyroscope includes a proof mass of a suspended spring mass system that is driven at a drive frequency. The proof mass moves relative to a sense electrode such that an overlap of the proof mass and sense electrode changes during the drive motion. A Coriolis force causes the proof mass to move relative to the sense electrode. The overlap and the movement due to the Coriolis force are sensed, and angular velocity is determined based on the magnitude of a signal generated due to a change in overlap and the Coriolis force.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: October 6, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Doruk Senkal, Houri Johari-Galle, Joseph Seeger
  • Patent number: 10766764
    Abstract: A microelectromechanical system (MEMS) sensor includes a MEMS layer that includes fixed and movable electrodes. In response to an in-plane linear acceleration, the movable electrodes move with respect to the fixed electrodes, and acceleration is determined based on the resulting change in capacitance. A plurality of auxiliary electrodes are located on a substrate of the MEMS sensor and below the MEMS layer, such that a capacitance between the MEMS layer and the auxiliary loads changes in response to an out-of-plane movement of the MEMS layer or a portion thereof. The MEMS sensor compensates for the acceleration value based on the capacitance sensed by the auxiliary electrodes.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: September 8, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Ilya Gurin, Joseph Seeger, Matthew Thompson
  • Patent number: 10746565
    Abstract: A method includes receiving a signal from a sensor. The signal includes a first in-phase component and a first quadrature component. The first in-phase and quadrature components are identified. A rate signal is applied to the sensor and the sensor generates a sensed rate signal. A second in-phase and quadrature components associated with the sensed rate signal are determined. A phase error based on the first and the second in-phase components, and the first and the second quadrature components is determined. The method may further include reducing error in measurements associated with the sensor by dynamically compensating for the determined phase error, e.g., by modifying a clock signal, by changing a demodulation phase of a demodulator used to identify the in-phase and the quadrature components.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: August 18, 2020
    Assignee: InvenSense, Inc.
    Inventors: Doruk Senkal, Joseph Seeger
  • Publication number: 20200225038
    Abstract: Embodiments for modifying a spring mass configuration are disclosed that minimize the effects of unwanted nonlinear motion on a MEMS sensor. The modifications include any or any combination of providing a rigid element between rotating structures of the spring mass configuration, tuning a spring system between the rotating structures and coupling an electrical cancellation system to the rotating structures. In so doing unwanted nonlinear motion such as unwanted 2nd harmonic motion is minimized.
    Type: Application
    Filed: January 6, 2020
    Publication date: July 16, 2020
    Inventors: Ozan ANAC, Joseph SEEGER
  • Patent number: 10692761
    Abstract: Selectively controlling application of a self-assembled monolayer (SAM) coating on a substrate of a device is presented herein. A method comprises: forming a material on a first substrate; removing a selected portion of the material from a defined contact area of the first substrate; forming a SAM coating on the material and the defined contact area—the SAM coating comprising a first adhesion force with respect to the material and a second adhesion force with respect to the defined contact area, and the first adhesion force being less than the second adhesion force; removing the SAM coating that has been formed on the material; and attaching the first substrate to the second substrate—the first substrate being positioned across from the second substrate, and the SAM coating that has been formed on the defined contact area being positioned across from a bump stop of the second substrate.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: June 23, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Bongsang Kim, Joseph Seeger
  • Patent number: 10649002
    Abstract: Techniques for self-adjusting calibration of offset and sensitivity of a MEMS accelerometer are provided. In one example, a system comprises a first microelectromechanical (MEMS) sensor. The first MEMS sensor comprises: a proof mass coupled to an anchor connected to a reference plane, wherein the proof mass is coupled to the anchor via a first spring and a second spring; a plurality of reference paddles coupled to the anchor; and a plurality of acceleration sensing electrodes disposed on the reference plane, wherein a first area of each of the acceleration sensing electrodes is larger than a second area of each of a plurality of reference electrodes associated with the plurality of reference paddles.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: May 12, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Matthew Julian Thompson, Joseph Seeger, Sarah Nitzan
  • Publication number: 20200087142
    Abstract: A device includes a microelectromechanical system (MEMS) sensor die comprising a deformable membrane, a MEMS heating element, and a substrate. The MEMS heating element is integrated within a same layer and a same plane as the deformable membrane. The MEMS heating element surrounds the deformable membrane and is separated from the deformable membrane through a trench. The MEMS heating element is configured to generate heat to heat up the deformable membrane. The substrate is coupled to the deformable membrane.
    Type: Application
    Filed: September 17, 2019
    Publication date: March 19, 2020
    Applicant: InvenSense, Inc.
    Inventors: Pei-Wen Yen, Ting-Yuan Liu, Jye Ren, Chung-Hsien Lin, Joseph Seeger, Calin Miclaus
  • Publication number: 20200056887
    Abstract: Reducing, at a common sense electrode of a group of sensors of a system, a common charge flow due to a common motion of the group of sensors is presented herein. The group of electromechanical sensors generates a common charge flow as a result of a common motion of the group of electromechanical sensors and a differential charge flow as a result of a differential motion of the group of electromechanical sensors—respective sense elements of the group of electromechanical sensors being electrically connected at the common sense electrode. The system further comprises a voltage-to-voltage converter component that generates, via an output of the voltage-to-voltage converter component, a positive feedback voltage, and minimizes the common charge flow by coupling, via a defined feedback capacitance, the positive feedback voltage to the common sense electrode—the common sense electrode being electrically coupled to an input of the voltage-to-voltage converter component.
    Type: Application
    Filed: August 14, 2019
    Publication date: February 20, 2020
    Inventor: Joseph Seeger
  • Publication number: 20200057087
    Abstract: Reducing a sensitivity of an electromechanical sensor is presented herein. The electromechanical sensor comprises a sensitivity with respect to a variation of a mechanical-to-electrical gain of a sense element of the electromechanical sensor; and a voltage-to-voltage converter component that minimizes the sensitivity by coupling, via a defined feedback capacitance, a positive feedback voltage to a sense electrode of the sense element—the sense element electrically coupled to an input of the voltage-to-voltage converter component. In one example, the voltage-to-voltage converter component minimizes the sensitivity by maintaining, via the defined feedback capacitance, a constant charge at the sense electrode. In another example, the electromechanical sensor comprises a capacitive sense element comprising a first node comprising the sense electrode. Further, a bias voltage component can apply a bias voltage to a second node of the electromechanical sensor.
    Type: Application
    Filed: July 2, 2019
    Publication date: February 20, 2020
    Inventors: Joseph Seeger, Pradeep Shettigar
  • Patent number: 10551193
    Abstract: A system and method in accordance with an embodiment reduces the cross-axis sensitivity of a gyroscope. This is achieved by building a gyroscope using a mechanical transducer that comprises a spring system that is less sensitive to fabrication imperfection and optimized to minimize the response to the rotations other than the intended input rotation axis. The longitudinal axes of the first and second flexible elements are parallel to each other and parallel to the first direction.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: February 4, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Joseph Seeger, Ozan Anac
  • Patent number: 10527420
    Abstract: A MEMS device includes at least one proof mass, the at least one proof mass is capable of moving to contact at least one target structure. The MEMS device further includes at least one elastic bump stop coupled to the proof mass and situated at a first distance from the target structure. The MEMS device additionally includes at least one secondary bump stop situated at a second distance from the target structure, wherein the second distance is greater than the first distance, and further wherein the at least one elastic bump stop moves to reduce the first distance when a shock is applied.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: January 7, 2020
    Assignee: Invensense, Inc.
    Inventors: Jin Qiu, Joseph Seeger
  • Patent number: 10527421
    Abstract: Embodiments for modifying a spring mass configuration are disclosed that minimize the effects of unwanted nonlinear motion on a MEMS sensor. The modifications include any or any combination of providing a rigid element between rotating structures of the spring mass configuration, tuning a spring system between the rotating structures and coupling an electrical cancellation system to the rotating structures. In so doing unwanted nonlinear motion such as unwanted 2nd harmonic motion is minimized.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: January 7, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Ozan Anac, Joseph Seeger
  • Publication number: 20190382259
    Abstract: A device with a first MEMS device and a second MEMS device is disclosed. The first MEMS device is configured to sense at least one external influence. The second MEMS device is responsive to the at least one external influence. The first MEMS device is configured to change a state when the at least one external influence exceeds a threshold value. The first MEMS device is configured to retain the state below the threshold value, wherein the change in state of the first MEMS device is done passively and wherein the state of the first MEMS device is indicative of a status of the second MEMS device. In one example, the first MEMS device further comprises a normally open switch that closes when the external influence exceeds the threshold value.
    Type: Application
    Filed: September 1, 2019
    Publication date: December 19, 2019
    Inventors: MATTHEW JULIAN THOMPSON, STEPHEN LLOYD, JOSEPH SEEGER
  • Patent number: 10505006
    Abstract: A method includes depositing a silicon layer over a first oxide layer that overlays a first silicon substrate. The method further includes depositing a second oxide layer over the silicon layer to form a composite substrate. The composite substrate is bonded to a second silicon substrate to form a micro-electro-mechanical system (MEMS) substrate. Holes within the second silicon substrate are formed by reaching the second oxide layer of the composite substrate. The method further includes removing a portion of the second oxide layer through the holes to release MEMS features. The MEMS substrate may be bonded to a CMOS substrate.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: December 10, 2019
    Assignee: InvenSense, Inc.
    Inventors: Bongsang Kim, Jongwoo Shin, Joseph Seeger, Logeeswaran Veerayah Jayaraman, Houri Johari-Galle
  • Publication number: 20190359479
    Abstract: A microelectromechanical system (MEMS) sensor includes a MEMS layer that includes fixed and movable electrodes. In response to an in-plane linear acceleration, the movable electrodes move with respect to the fixed electrodes, and acceleration is determined based on the resulting change in capacitance. A plurality of auxiliary electrodes are located on a substrate of the MEMS sensor and below the MEMS layer, such that a capacitance between the MEMS layer and the auxiliary loads changes in response to an out-of-plane movement of the MEMS layer or a portion thereof. The MEMS sensor compensates for the acceleration value based on the capacitance sensed by the auxiliary electrodes.
    Type: Application
    Filed: August 12, 2019
    Publication date: November 28, 2019
    Inventors: Ilya Gurin, Joseph Seeger, Matthew Thompson
  • Publication number: 20190345024
    Abstract: A sensor includes a substrate, an electrode, a deformable membrane, and a compensating structure. The substrate includes a first side and a second side. The first side is opposite to the second side. The substrate comprises a cavity on the first side. The electrode is positioned at a bottom of the cavity on the first side of the substrate. The deformable membrane is positioned on the first side of the substrate. The deformable membrane encloses the cavity and deforms responsive to external stimuli. The compensation structure is connected to outer periphery of the deformable membrane. The compensation structure creates a bending force that is opposite to a bending force of the deformable membrane responsive to temperature changes and thermal coefficient mismatch.
    Type: Application
    Filed: August 22, 2018
    Publication date: November 14, 2019
    Inventors: Chung-Hsien LIN, Joseph SEEGER, Calin MICLAUS, Tsung Lin TANG, Pei-Wen YEN
  • Patent number: 10451418
    Abstract: A system and/or method for utilizing quadrature signals, for example in a MEMS gyroscope, to control drive signal characteristics (e.g., amplitude, etc.). As a non-limiting example, a quadrature signal in a MEMS gyroscope may be isolated and/or processed to generate a drive signal that is used to drive a proof mass. Such a quadrature signal may, for example, be obtained passively as part of general Coriolis signal processing. Also for example, such a quadrature signal may be actively created and/or obtained through the use of electrical and/or mechanical features.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: October 22, 2019
    Assignee: InvenSense, Inc.
    Inventor: Joseph Seeger
  • Patent number: 10427930
    Abstract: A system and/or method for utilizing microelectromechanical systems (MEMS) switching technology to operate MEMS sensors. As a non-limiting example, a MEMS switch may be utilized to control DC and/or AC bias applied to MEMS sensor structures. Also for example, one or more MEMS switches may be utilized to provide drive signals to MEMS sensors (e.g., to provide a drive signal to a MEMS gyroscope).
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: October 1, 2019
    Assignee: InvenSense, Inc.
    Inventors: Matthew Thompson, Joseph Seeger
  • Patent number: 10421659
    Abstract: A microelectromechanical system (MEMS) sensor includes a MEMS layer that includes fixed and movable electrodes. In response to an in-plane linear acceleration, the movable electrodes move with respect to the fixed electrodes, and acceleration is determined based on the resulting change in capacitance. A plurality of auxiliary electrodes are located on a substrate of the MEMS sensor and below the MEMS layer, such that a capacitance between the MEMS layer and the auxiliary loads changes in response to an out-of-plane movement of the MEMS layer or a portion thereof. The MEMS sensor compensates for the acceleration value based on the capacitance sensed by the auxiliary electrodes.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: September 24, 2019
    Assignee: InvenSense, Inc.
    Inventors: Ilya Gurin, Joseph Seeger, Matthew Thompson
  • Patent number: 10415994
    Abstract: A self-test method by rotating the proof mass at a high frequency enables testing the functionality of both the drive and sense systems at the same time. In this method, the proof mass is rotated at a drive frequency. An input force which is substantially two times the drive frequency is applied to the actuation structures to rotate the proof mass of the gyroscope around the sensitive axis orthogonal to the drive axis. An output response of the gyroscope at the drive frequency is detected by a circuitry and a self-test response is obtained.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: September 17, 2019
    Assignee: INVENSENSE, INC.
    Inventors: Ozan Anac, Joseph Seeger