Patents by Inventor Joseph Seeger

Joseph Seeger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9846175
    Abstract: A rotational sensor for measuring rotational acceleration is disclosed. The rotational sensor comprises a sense substrate; at least two proof masses, and a set of two transducers. Each of the at least two proof masses is anchored to the sense substrate via at least one flexure and electrically isolated from each other; and the at least two proof masses are capable of rotating in-plane about a Z-axis relative to the sense substrate, wherein the Z-axis is normal to the substrate. Each of the transducers can sense rotation of each proof mass with respect to the sense substrate in response to a rotation of the rotational sensor.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: December 19, 2017
    Assignee: INVENSENSE, INC.
    Inventors: Steven S. Nasiri, Goksen G. Yaralioglu, Joseph Seeger, Babak Taheri
  • Patent number: 9840409
    Abstract: A system and method for providing a MEMS sensor are disclosed. In a first aspect, the system is a MEMS sensor that comprises a substrate, an anchor region coupled to the substrate, at least one support arm coupled to the anchor region, at least two guiding arms coupled to and moving relative to the at least one support arm, a plurality of sensing elements disposed on the at least two guiding arms to measure motion of the at least two guiding arms relative to the substrate, and a proof mass system comprising at least one mass coupled to each of the at least two guiding arms by a set of springs. The proof mass system is disposed outside the anchor region, the at least one support arm, the at least two guiding arms, the set of springs, and the plurality of sensing elements.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: December 12, 2017
    Assignee: InvenSense, Inc.
    Inventors: Matthew Julian Thompson, Joseph Seeger
  • Publication number: 20170350722
    Abstract: A method includes receiving a signal from a sensor. The signal includes a first in-phase component and a first quadrature component. The first in-phase and quadrature components are identified. A rate signal is applied to the sensor and the sensor generates a sensed rate signal. A second in-phase and quadrature components associated with the sensed rate signal are determined. A phase error based on the first and the second in-phase components, and the first and the second quadrature components is determined. The method may further include reducing error in measurements associated with the sensor by dynamically compensating for the determined phase error, e.g., by modifying a clock signal, by changing a demodulation phase of a demodulator used to identify the in-phase and the quadrature components.
    Type: Application
    Filed: June 3, 2016
    Publication date: December 7, 2017
    Inventors: Doruk Senkal, Joseph Seeger
  • Publication number: 20170314960
    Abstract: A self-test method by rotating the proof mass at a high frequency enables testing the functionality of both the drive and sense systems at the same time. In this method, the proof mass is rotated at a drive frequency. An input force which is substantially two times the drive frequency is applied to the actuation structures to rotate the proof mass of the gyroscope around the sensitive axis orthogonal to the drive axis. An output response of the gyroscope at the drive frequency is detected by a circuitry and a self-test response is obtained.
    Type: Application
    Filed: July 7, 2017
    Publication date: November 2, 2017
    Inventors: Ozan Anac, Joseph Seeger
  • Patent number: 9731963
    Abstract: Semiconductor manufacturing processes include providing a first substrate having a first passivation layer disposed above a patterned top-level metal layer, and further having a second passivation layer disposed over the first passivation layer; the second passivation layer has a top surface. The processes further include forming an opening in a first portion of the second passivation layer, and the opening exposes a portion of a surface of the first passivation layer. The processes further include patterning the second and first passivation layers to expose portions of the patterned top-level metal layer and bonding a second substrate and the first substrate to each other. The bonding occurs within a temperature range in which at least the exposed portion of the first passivation layer undergoes outgassing.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: August 15, 2017
    Assignee: Invensense, Inc.
    Inventors: Cerina Zhang, Martin Lim, Jongwoo Shin, Joseph Seeger
  • Patent number: 9714842
    Abstract: A self-test method by rotating the proof mass at a high frequency enables testing the functionality of both the drive and sense systems at the same time. In this method, the proof mass is rotated at a drive frequency. An input force which is substantially two times the drive frequency is applied to the actuation structures to rotate the proof mass of the gyroscope around the sensitive axis orthogonal to the drive axis. An output response of the gyroscope at the drive frequency is detected by a circuitry and a self-test response is obtained.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: July 25, 2017
    Assignee: INVENSENSE, INC.
    Inventors: Ozan Anac, Joseph Seeger
  • Patent number: 9708176
    Abstract: A system and/or method for utilizing MEMS switching technology to operate MEMS sensors. As a non-limiting example, a MEMS switch may be utilized to control DC and/or AC bias applied to MEMS sensor structures. Also for example, one or more MEMS switches may be utilized to provide drive signals to MEMS sensors (e.g., to provide a drive signal to a MEMS gyroscope).
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: July 18, 2017
    Assignee: Invensense, Inc.
    Inventors: Matthew Thompson, Joseph Seeger
  • Publication number: 20170199035
    Abstract: A system and/or method for utilizing quadrature signals, for example in a MEMS gyroscope, to control drive signal characteristics (e.g., amplitude, etc.). As a non-limiting example, a quadrature signal in a MEMS gyroscope may be isolated and/or processed to generate a drive signal that is used to drive a proof mass. Such a quadrature signal may, for example, be obtained passively as part of general Coriolis signal processing. Also for example, such a quadrature signal may be actively created and/or obtained through the use of electrical and/or mechanical features.
    Type: Application
    Filed: December 9, 2015
    Publication date: July 13, 2017
    Inventor: Joseph Seeger
  • Publication number: 20170184627
    Abstract: A method and system for a sensor system of a device is disclosed. The sensor system includes a first MEMS sensor (FMEMS), a second MEMS sensor (SMEMS) and a signal processor (SP). An excitation is imparted to the device along a first axis (FA). The FMEMS has a first primary sense axis (FPSA), moves in response to a component of the excitation along the FA aligned with the FPSA and outputs a first signal proportional to an excitation along the FPSA. The SMEMS has a second primary sense axis (SPSA), moves in response to a component of the excitation along the FA aligned with the SPSA and outputs a second signal proportional to an excitation along the SPSA. The SP combines the first signal and the second signal to output a third signal proportional to the excitation along the FA. The FA, the FPSA and the SPSA have different orientations.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 29, 2017
    Inventors: MATTHEW JULIAN THOMPSON, JOSEPH SEEGER
  • Patent number: 9683844
    Abstract: An angular velocity sensor including a drive extension mode. In one aspect, an angular rate sensor includes a base and at least three masses disposed substantially in a plane parallel to the base, the masses having a center of mass. At least one actuator drives the masses in an extension mode, such that in the extension mode the masses move in the plane simultaneously away or simultaneously towards the center of mass. At least one transducer senses at least one Coriolis force resulting from motion of the masses and angular velocity about at least one input axis of the sensor. Additional embodiments can include a linkage that constrains the masses to move in the extension mode.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: June 20, 2017
    Assignee: INVENSENSE, INC.
    Inventors: Joseph Seeger, Bruno Borovic
  • Patent number: 9663349
    Abstract: A MEMS device and method for providing a MEMS device are disclosed. In a first aspect, the MEMS device comprises a first substrate and a second substrate coupled to the first substrate forming a sealed enclosure. A moveable structure is located within the sealed enclosure. An outgassing layer is formed on the first or second substrates and within the sealed enclosure. A first conductive layer is disposed between the moveable structure and the outgassing layer, wherein the first conductive layer allows outgassing species to pass therethrough.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: May 30, 2017
    Assignee: INVENSENSE, INC.
    Inventors: Jongwoo Shin, Houri Johari-Galle, Martin Lim, Joseph Seeger
  • Patent number: 9664750
    Abstract: A magnetic field sensor includes a driving element through which an electric current circumnavigates the driving element. A Lorentz force acts on the driving element resulting in a torque about a first axis in response to a magnetic field along a second axis substantially parallel to a plane of a substrate. The driving element is coiled-shaped. A sensing element of the magnetic field sensor is configured to rotate about the first axis substantially parallel to the plane of the substrate in response to the magnetic field and a coupling element mechanically couples the driving element to the sensing element. The driving element, the sensing element, and the coupling element are disposed in the plane, substantially parallel to the substrate. At least two anchors are configured to connect the driving element, the sensing element, and the coupling element to the substrate.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: May 30, 2017
    Assignee: INVENSENSE, INC.
    Inventors: Matthew Julian Thompson, Joseph Seeger
  • Patent number: 9606191
    Abstract: A MEMS device including a first proof mass, a first magnetized magnetic material disposed partially on a surface of the first proof mass, a first spring anchored to a substrate to support the first proof mass, and a first sensing element coupled to the first proof mass and operable to sense the motion of the first proof mass caused by an ambient acceleration. The MEMS device further includes a second sensing element coupled to the first proof mass and operable to sense the motion of the first proof mass caused by an ambient magnetic field.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: March 28, 2017
    Assignee: INVENSENSE, INC.
    Inventors: Joseph Seeger, Jin Qiu, Matthew Julian Thompson
  • Patent number: 9593008
    Abstract: A MEMS sensor is disclosed. The MEMS sensor includes a MEMS structure and a substrate coupled to the MEMS structure. The substrate includes a layer of metal and a layer of dielectric material. The MEMS structure moves in response to an excitation. A first over-travel stop is formed on the substrate at a first distance from the MEMS structure. A second over-travel stop on the substrate at a second distance from the MEMS structure. At least one electrode on the substrate at a third distance from the MEMS structure. The first, second and third distances are all different.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: March 14, 2017
    Assignee: InvenSense, Inc.
    Inventors: Matthew Julian Thompson, Michael Dueweke, Ilya Gurin, Joseph Seeger
  • Publication number: 20170001861
    Abstract: Semiconductor manufacturing processes include providing a first substrate having a first passivation layer disposed above a patterned top-level metal layer, and further having a second passivation layer disposed over the first passivation layer; the second passivation layer has a top surface. The processes further include forming an opening in a first portion of the second passivation layer, and the opening exposes a portion of a surface of the first passivation layer. The processes further include patterning the second and first passivation layers to expose portions of the patterned top-level metal layer and bonding a second substrate and the first substrate to each other. The bonding occurs within a temperature range in which at least the exposed portion of the first passivation layer undergoes outgassing.
    Type: Application
    Filed: September 14, 2016
    Publication date: January 5, 2017
    Inventors: Cerina ZHANG, Martin LIM, Jongwoo SHIN, Joseph SEEGER
  • Publication number: 20160376143
    Abstract: A MEMS device and method for providing a MEMS device are disclosed. In a first aspect, the MEMS device comprises a first substrate and a second substrate coupled to the first substrate forming a sealed enclosure. A moveable structure is located within the sealed enclosure. An outgassing layer is formed on the first or second substrates and within the sealed enclosure. A first conductive layer is disposed between the moveable structure and the outgassing layer, wherein the first conductive layer allows outgassing species to pass therethrough.
    Type: Application
    Filed: November 6, 2015
    Publication date: December 29, 2016
    Inventors: Jongwoo SHIN, Houri JOHARI-GALLE, Martin LIM, Joseph SEEGER
  • Publication number: 20160363445
    Abstract: Embodiments for modifying a spring mass configuration are disclosed that minimize the effects of unwanted nonlinear motion on a MEMS sensor. The modifications include any or any combination of providing a rigid element between rotating structures of the spring mass configuration, tuning a spring system between the rotating structures and coupling an electrical cancellation system to the rotating structures.
    Type: Application
    Filed: September 24, 2014
    Publication date: December 15, 2016
    Inventors: Ozan ANAC, Joseph SEEGER
  • Publication number: 20160347605
    Abstract: A system and/or method for utilizing MEMS switching technology to operate MEMS sensors. As a non-limiting example, a MEMS switch may be utilized to control DC and/or AC bias applied to MEMS sensor structures. Also for example, one or more MEMS switches may be utilized to provide drive signals to MEMS sensors (e.g., to provide a drive signal to a MEMS gyroscope).
    Type: Application
    Filed: May 28, 2015
    Publication date: December 1, 2016
    Inventors: Matthew Thompson, Joseph Seeger
  • Publication number: 20160297670
    Abstract: A device with a first MEMS device and a second MEMS device is disclosed. The first MEMS device is configured to sense at least one external influence. The second MEMS device is responsive to the at least one external influence. The first MEMS device is configured to change a state when the at least one external influence exceeds a threshold value. The first MEMS device is configured to retain the state below the threshold value, wherein the change in state of the first MEMS device is done passively and wherein the state of the first MEMS device is indicative of a status of the second MEMS device.
    Type: Application
    Filed: April 7, 2015
    Publication date: October 13, 2016
    Inventors: MATTHEW JULIAN THOMPSON, STEPHEN LLOYD, JOSEPH SEEGER
  • Patent number: 9452920
    Abstract: A method of fabricating electrical connections in an integrated MEMS device is disclosed. The method comprises providing a MEMS substrate which includes forming one or more cavities in a first semiconductor layer; forming a second semiconductor layer; and providing a dielectric layer between the first semiconductor layer and the second semiconductor layer The MEMS substrate providing step further includes bonding the first semiconductor layer to a second semiconductor layer; etching at least one via through the second semiconductor layer and the dielectric layer; and depositing a first conductive material onto the second semiconductor layer surface and filling the at least one via.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: September 27, 2016
    Assignee: INVENSENSE, INC.
    Inventors: Matthew Julian Thompson, Joseph Seeger