Patents by Inventor Junta Izumi

Junta Izumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11349156
    Abstract: In a power supply device including a plurality of battery modules each including a secondary battery, in which the battery modules are connected in series to one another according to a gate driving signal from a controller and in each of the battery modules, the gate driving signal is delayed in a gate driving signal processing circuit included in the battery module and then transmitted from upstream to downstream of the series connection, an ID is provided for each of the battery modules by transmitting an ID setting signal for providing an ID unique to the battery module using a gate signal line for transmitting the gate driving signal.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: May 31, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naoki Yanagizawa, Shuji Tomura, Kyosuke Tanemura, Kazuo Ootsuka, Shigeaki Goto, Junta Izumi, Kenji Kimura
  • Patent number: 11327118
    Abstract: A battery capacity estimation method includes first to third steps. The first step involves obtaining information about a Nyquist plot by a predetermined AC-IR measurement. The second step involves obtaining image data of a Nyquist diagram that is obtained when the AC-IR measurement is performed at a predetermined first temperature, based on the information about the Nyquist plot obtained in the first step and on an ambient temperature at which the AC-IR measurement is performed in the first step. The third step involves inputting the image data of the Nyquist diagram obtained in the second step to an input layer of a pre-trained neural network model, to obtain a battery capacity estimate value of a battery to be measured.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: May 10, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Junta Izumi, Masahiko Mitsui, Juni Yasoshima
  • Publication number: 20220120818
    Abstract: A battery capacity estimation system executes a charging and discharging process (S1), an alternating current impedance acquiring process (S2 and S3), and a battery capacity estimating process (S4 to S6). The charging and discharging process involves charging and discharging a target secondary battery. The alternating current impedance acquiring process involves acquiring a measurement result of an alternating current impedance of a target secondary battery, by applying an alternating current signal within a specific frequency range to the target secondary battery after completion of the charging and discharging in the charging and discharging process and before a predetermined maximum waiting time elapses. The battery capacity estimating step involves estimating a battery capacity of the target secondary battery based on the measurement result of the alternating current impedance.
    Type: Application
    Filed: December 23, 2021
    Publication date: April 21, 2022
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masahiko MITSUI, Junta IZUMI, Juni YASOSHIMA
  • Publication number: 20220123562
    Abstract: A power supply device includes: a first high-voltage line for exchanging the electric power externally; a second high-voltage line for applying current flowing in a direction opposite to the first high-voltage line; a plurality of batteries; a plurality of SUs, the SUs being provided corresponding to the respective batteries, switching a connection state of the batteries to the first high-voltage line, and being disposed in a circle; and an SCU that controls the SUs. The SU can switch between a first state in which the battery corresponding to the SU is connected in series to the first high-voltage line and a second state in which the battery is not connected to the first high-voltage line. The SCU controls the SUs to switch to the first state or the second state in accordance with a voltage of the electric power to be charged and discharged.
    Type: Application
    Filed: October 18, 2021
    Publication date: April 21, 2022
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Junta IZUMI, Kenji KIMURA, Masakazu HABU, Hiroshi TSUKADA, Atsuhiro TAKAHASHI, Takashi KOJIMA, Shuji TOMURA, Kazuo OOTSUKA, Naoki YANAGIZAWA, Kyosuke TANEMURA
  • Patent number: 11307257
    Abstract: A trained neural network model is a neural network model which has been trained based on Nyquist plots of a plurality of modules of which full charge capacity is within a reference range. A processing system determines to which of a first group of modules of which full charge capacity is within the reference range and a second group of modules of which full charge capacity is out of the reference range a module belongs, based on discriminant analysis in which at least one feature value extracted from the Nyquist plot of the module is adopted as an explanatory variable. When the processing system determines that the module M belongs to the first group, the processing system estimates a full charge capacity of the module by using the trained neural network model.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: April 19, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Junta Izumi, Masahiko Mitsui, Juni Yasoshima, Kotaro Shibuya
  • Patent number: 11305668
    Abstract: A controller performs processing including estimating a current degree of deterioration based on battery use history data when it is determined that deterioration diagnosis timing has come, setting a deterioration curve, setting a deterioration straight line, obtaining an elapsed time, obtaining a capacity retention based on the elapsed time and the deterioration straight line, updating representation of the capacity retention on an output unit, and showing an initial value as the capacity retention when it is determined that the deterioration straight line has not been set.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: April 19, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuki Kubo, Yoshihiro Uchida, Junta Izumi, Masaki Uchiyama
  • Patent number: 11302970
    Abstract: A power supply system includes a controller, and a plurality of battery modules. The battery modules are connected in series, according to a gate drive signal from the controller, to provide series connection, and each of the battery modules has a disconnecting device configured to force the battery module to be disconnected from the series connection. The controller is configured to estimate the internal resistance of the battery module disconnected from the series connection by the disconnecting device, from a module voltage of the battery module before the battery module is disconnected from the series connection, a module voltage immediately after the battery module is disconnected, and a module current delivered from the battery module.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: April 12, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kyosuke Tanemura, Shuji Tomura, Naoki Yanagizawa, Kazuo Ootsuka, Junta Izumi, Kenji Kimura
  • Patent number: 11221372
    Abstract: A battery performance evaluation device executes an alternating current impedance acquiring process (S1), an OCV acquiring process (S2), and an SOC estimating process (S3). The alternating current impedance acquiring process involves acquiring a measurement result of an alternating current impedance of a target secondary battery, the alternating current impedance measured by applying an application signal to the target secondary battery within a specific frequency range. The OCV acquiring process involves acquiring an OCV of the target secondary battery. The SOC estimating process involves estimating an SOC of the target secondary battery to be 0%, if an imaginary component of the measurement result of the acquired alternating current impedance at a predetermined frequency within the specific frequency range is greater than or equal to a first threshold value and the acquired OCV value is less than or equal to a second threshold value.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: January 11, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masahiko Mitsui, Junta Izumi, Juni Yasoshima
  • Patent number: 11218013
    Abstract: A power supply system includes a plurality of battery modules and a control unit, and supplies electric power from the battery modules in an uppermost stage and a lowermost stage to a load. The control unit is configured to perform ON/OFF control for setting the battery modules to an ON state in an active time, setting the battery modules to an OFF state in a non-active time, and alternately repeating the active time and the non-active time. The control unit is configured to delay an ON/OFF control timing for the battery module in a lower stage adjacent to the battery module in a higher stage by a control delay time in comparison with the battery module in the higher stage. The control unit is configured to randomly determine the control delay times for the battery modules in lower stages than the battery module in the uppermost stage.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: January 4, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi Tsukada, Shuji Tomura, Kazuo Ootsuka, Naoki Yanagizawa, Kyosuke Tanemura, Junta Izumi, Kenji Kimura
  • Patent number: 11196252
    Abstract: A power supply system includes a plurality of sweep modules. Each sweep module includes a battery module, an input and output circuit, a switching element, a capacitor, and a line. The input and output circuit connects the battery module to a main line. The switching element switches between connection and disconnection between the battery module and the main line. The capacitor is attached in parallel to the battery module. The line connects the input and output circuit to the battery module. The line is maintained in a state in which a loop portion is formed.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: December 7, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni Yasoshima, Junta Izumi, Kenji Kimura, Toshihiro Katsuda, Kohei Matsuura, Junichi Matsumoto, Shuji Tomura, Shigeaki Goto, Naoki Yanagizawa, Kyosuke Tanemura, Kazuo Ootsuka, Takayuki Ban, Hironobu Nishi
  • Patent number: 11196271
    Abstract: Provided is a full-charge-capacity estimating device that has one or more of a plurality of battery modules, as battery-modules-to-be-measured, charged or discharged by means of a first switch element and a second switch element according to whether a power supply device is in a powering state or a regenerating state, measures an integrated current value and a change in the state-of-charge of the battery-module-to-be-measured, and then estimates the full charge capacity of the battery-module-to-be-measured from the integrated current value and the change in the state-of-charge.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: December 7, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shuji Tomura, Shigeaki Goto, Naoki Yanagizawa, Kyosuke Tanemura, Kazuo Ootsuka, Junta Izumi, Kenji Kimura, Toshihiro Katsuda, Kohei Matsuura, Takayuki Ban
  • Patent number: 11180051
    Abstract: A vehicle includes a controller and a display. The controller is configured to calculate a capacity retention (a degree of deterioration) based on measurement data of a main battery. The controller estimates an upper limit value and a lower limit value of an error (range) of the calculated capacity retention. The controller calculates a capacity retention range including the upper limit value Wu and the lower limit value. The controller has the display show the calculated capacity retention range.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: November 23, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuki Kubo, Junta Izumi, Yoshihiro Uchida, Masaki Uchiyama
  • Patent number: 11143706
    Abstract: A battery capacity estimation method includes a first step and a second step. The first step is a step of obtaining image data of a Nyquist diagram drawn by a predetermined method, based on a Nyquist plot obtained by a predetermined AC-IR measurement. The second step is a step of obtaining a battery capacity estimate value of a battery to be measured by inputting the image data of the Nyquist diagram obtained in the first step into an input layer of a pre-trained neural network model.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: October 12, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Junta Izumi, Masahiko Mitsui, Juni Yasoshima
  • Patent number: 11139682
    Abstract: A control device of a power supply system is configured to control inputting of electric power from a power system connected to a power distribution device to a plurality of strings connected to the power distribution device and outputting of electric power from the plurality of strings to the power system and to execute a process of stopping control for switching the at least one switching element between connection and disconnection on a string in which inputting of electric power and outputting of electric power are stopped out of the plurality of strings.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: October 5, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni Yasoshima, Junta Izumi, Kenji Kimura, Toshihiro Katsuda, Kohei Matsuura, Junichi Matsumoto, Shuji Tomura, Shigeaki Goto, Naoki Yanagizawa, Kyosuke Tanemura, Kazuo Ootsuka, Takayuki Ban, Hironobu Nishi
  • Patent number: 11139461
    Abstract: A method for manufacturing a nickel-metal hydride battery includes: a first step of preparing a first nickel-metal hydride battery having a positive electrode including nickel hydroxide (Ni(OH)2); and a second step of manufacturing the second nickel-metal hydride battery by performing 600% overcharging to the prepared first nickel-metal hydride battery. The 600% overcharging is a process for supplying the first nickel-metal hydride battery with an amount of electric power of 600% of the rated capacity of the first nickel-metal hydride battery.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: October 5, 2021
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiko Mitsui, Junta Izumi, Kenji Takahashi, Hiroyuki Kaiya
  • Patent number: 11101648
    Abstract: A power supply system includes a main line, a plurality of sweep modules, and a control unit. Each sweep module includes a battery module and a power circuit module. The power circuit module switches between connection and disconnection between the battery module and the main line. The control unit executes sweep control for sequentially switching the battery modules which are to be connected to the main line. The control unit maintains connection of a refreshing module which is to be subjected to refreshing charging/discharging to the main line while sweep control is being executed in a state in which the refreshing module is excluded in at least one of outputting of electric power to the outside and inputting of electric power from the outside.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: August 24, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni Yasoshima, Junta Izumi, Kenji Kimura, Toshihiro Katsuda, Kohei Matsuura, Junichi Matsumoto, Shuji Tomura, Shigeaki Goto, Naoki Yanagizawa, Kyosuke Tanemura, Kazuo Ootsuka, Takayuki Ban, Hironobu Nishi
  • Publication number: 20210203178
    Abstract: A power supply system includes a plurality of battery modules and a control unit, and supplies electric power from the battery modules in an uppermost stage and a lowermost stage to a load. The control unit is configured to perform ON/OFF control for setting the battery modules to an ON state in an active time, setting the battery modules to an OFF state in a non-active time, and alternately repeating the active time and the non-active time. The control unit is configured to delay an ON/OFF control timing for the battery module in a lower stage adjacent to the battery module in a higher stage by a control delay time in comparison with the battery module in the higher stage. The control unit is configured to randomly determine the control delay times for the battery modules in lower stages than the battery module in the uppermost stage.
    Type: Application
    Filed: September 4, 2020
    Publication date: July 1, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi Tsukada, Shuji Tomura, Kazuo Ootsuka, Naoki Yanagizawa, Kyosuke Tanemura, Junta Izumi, Kenji Kimura
  • Patent number: 11050247
    Abstract: The present teaching provides a power supply system capable of fully utilizing a plurality of batteries having different performances. A power supply system disclosed here includes a main line, a plurality of sweep modules, and a controller. Each of the sweep modules includes a battery module and an electric power circuit module. The electric power circuit module includes a switching device for connecting a connection state between the battery modules and the main line between connection and disconnection. The controller performs sweep control of sequentially switching the battery module connected to the main line among the plurality of battery modules. During an input of electric power from outside, the controller disconnects the battery module whose SOC level satisfies a high SOC condition from the main line (S7), and continues sweep control (S8, S9).
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: June 29, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni Yasoshima, Junta Izumi, Kenji Kimura, Toshihiro Katsuda, Kohei Matsuura, Junichi Matsumoto, Shuji Tomura, Shigeaki Goto, Naoki Yanagizawa, Kyosuke Tanemura, Kazuo Ootsuka, Takayuki Ban, Hironobu Nishi
  • Publication number: 20210132153
    Abstract: A battery management system includes a control device and a storage. The storage stores at least one trained neural network. The trained neural network includes an input layer that accepts input data that represents a numeric value for each pixel in an image where a prescribed CCV waveform (a CCV charging waveform or a CCV discharging waveform) of a secondary battery is drawn in a region constituted of a predetermined number of pixels, and when input data is input to the input layer, the trained neural network outputs a full charge capacity of the secondary battery. The control device estimates the full charge capacity of a target battery by inputting input data obtained for the target battery into the input layer of the trained neural network.
    Type: Application
    Filed: September 30, 2020
    Publication date: May 6, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Junta IZUMI, Akihiro WATANABE, Toshiki HORI, Misato BABA
  • Patent number: 10985606
    Abstract: A power supply system disclosed here is connected to an electric power system through a distribution device. The power supply system includes a plurality of strings connected to the distribution device and a failure detector. The failure detector of the power supply system is configured to perform a first process of connecting at least one battery module to a main line to set a voltage detected by a string voltage detector at a voltage higher than a predetermined voltage in a state where a switch disconnects the distribution device and the main line, a second process of sending a disconnecting signal for disconnecting all the sweep modules from the main line, and a third process of determining whether the voltage detected by the string voltage detector is lower than the predetermined determination voltage or not after the second process.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: April 20, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni Yasoshima, Junta Izumi, Kenji Kimura, Toshihiro Katsuda, Kohei Matsuura, Junichi Matsumoto, Shuji Tomura, Shigeaki Goto, Naoki Yanagizawa, Kyosuke Tanemura, Kazuo Ootsuka, Takayuki Ban, Hironobu Nishi