Patents by Inventor Justin Mauck

Justin Mauck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200039260
    Abstract: A method for maintenance of a printing system includes maintaining an inert gas environment in a printing system enclosure housing the printing system, and placing an auxiliary enclosure in flow communication with the printing system enclosure through a sealable opening. While the auxiliary enclosure and the printing system enclosure are in flow communication, the method further includes moving a part between the printing system enclosure and the auxiliary enclosure using a handler positioned proximate the sealable opening, the part being related to maintenance of the printing system. During the moving, the auxiliary enclosure is maintained to have an inert gas environment.
    Type: Application
    Filed: October 10, 2019
    Publication date: February 6, 2020
    Applicant: KATEEVA, INC.
    Inventors: Justin MAUCK, Alexander Sou-Kang KO, Eliyahu VRONSKY, Shandon ALDERSON
  • Patent number: 10537911
    Abstract: A coating can be provided on a substrate. Fabrication of the coating can include forming a solid layer in a specified region of the substrate while supporting the substrate in a coating system using a gas cushion. For example, a liquid coating can be printed over the specified region while the substrate is supported by the gas cushion. The substrate can be held for a specified duration after the printing the patterned liquid. The substrate can be conveyed to a treatment zone while supported using the gas cushion. The liquid coating can be treated to provide the solid layer including continuing to support the substrate using the gas cushion.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: January 21, 2020
    Assignee: Kateeva, Inc.
    Inventors: Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Conor F. Madigan, Eugene Rabinovich, Nahid Harjee, Christopher Buchner, Gregory Lewis
  • Publication number: 20200013649
    Abstract: Apparatus and techniques are described herein for use in manufacturing electronic devices. such as can include organic light emitting diode (OLED) devices. Such apparatus and techniques can include using one or more modules having a controlled environment. For example, a substrate can be received from a printing system located in a first processing environment, and the substrate can be provided a second processing environment, such as to an enclosed thermal treatment module comprising a controlled second processing environment. The second processing environment can include a purified gas environment having a different composition than the first processing environment.
    Type: Application
    Filed: July 3, 2019
    Publication date: January 9, 2020
    Inventors: Conor F. Madigan, Eliyahu Vronsky, Alexander Sou-Kang Ko, Justin Mauck
  • Publication number: 20200009597
    Abstract: A method for providing a substrate coating comprises transferring a substrate to an enclosed ink jet printing system; printing organic material in a deposition region of the substrate using the enclosed ink jet printing system, the deposition region comprising at least a portion of an active region of a light-emitting device on the substrate; loading the substrate with the organic material deposited thereon to an enclosed curing module; supporting the substrate in the enclosed curing module, the supporting the substrate comprising floating the substrate on a gas cushion established by a floatation support apparatus; and while supporting the substrate in the enclosed curing module, curing the organic material deposited on the substrate to form an organic film layer.
    Type: Application
    Filed: September 18, 2019
    Publication date: January 9, 2020
    Applicant: KATEEVA, INC.
    Inventors: Alexander Sou-Kang KO, Justin MAUCK, Eliyahu VRONSKY, Conor F. MADIGAN, Eugene RABINOVICH, Nahid HARJEE, Christopher BUCHNER, Gregory LEWIS
  • Publication number: 20190388928
    Abstract: A method of forming a material layer on a substrate comprises loading a substrate into a printing zone of a coating system using a substrate handler, printing an organic ink material on a substrate while the substrate is located in the printing zone, transferring the substrate from the printing zone to a treatment zone of the coating system, treating the organic ink material deposited on the substrate in the treatment zone to form a film layer on the substrate, and removing the substrate from the treatment zone using the substrate handler.
    Type: Application
    Filed: August 28, 2019
    Publication date: December 26, 2019
    Applicant: KATEEVA, INC.
    Inventors: Alexander Sou-Kang KO, Justin MAUCK, Eliyahu VRONSKY, Conor F. MADIGAN, Eugene RABINOVICH, Nahid HARJEE, Christopher BUCHNER, Gregory LEWIS
  • Patent number: 10512931
    Abstract: Apparatus and techniques for use in manufacturing a light emitting device, such as an organic light emitting diode (OLED) device can include using one or more modules having a controlled environment. The controlled environment can be maintained at a pressure at about atmospheric pressure or above atmospheric pressure. The modules can be arranged to provide various processing regions and to facilitate printing or otherwise depositing one or more patterned organic layers of an OLED device, such as an organic encapsulation layer (OEL) of an OLED device. In an example, uniform support for a substrate can be provided at least in part using a gas cushion, such as during one or more of a printing, holding, or curing operation comprising an OEL fabrication process. In another example, uniform support for the substrate can be provided using a distributed vacuum region, such as provided by a porous medium.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: December 24, 2019
    Assignee: KATEEVA, INC.
    Inventors: Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Conor F. Madigan, Eugene Rabinovich, Nahid Harjee, Christopher Buchner, Gregory Lewis
  • Patent number: 10500880
    Abstract: The present teachings disclose various embodiments of a gas enclosure system can have a gas enclosure that can include a printing system enclosure and an auxiliary enclosure. In various embodiments of a gas enclosure system of the present teachings, a printing system enclosure can be isolated from an auxiliary enclosure. Various systems and methods of the present teachings can provide for the ongoing management of a printing system by utilizing various embodiments of isolatable enclosures. For example, various measurement and maintenance process steps for the management of a printhead assembly can be performed in an auxiliary enclosure, which can be isolated from a printing system enclosure of a gas enclosure system, thereby preventing or minimizing interruption of a printing process.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: December 10, 2019
    Assignee: KATEEVA, INC.
    Inventors: Justin Mauck, Alexander Sou-Kang Ko, Eliyahu Vronsky, Shandon Alderson
  • Patent number: 10493763
    Abstract: Features for various embodiments of a self-contained printhead unit, including an on-board fluidic system, quick-coupling electrical and pneumatic interfacing, in conjunction with the features of various embodiments of a kinematic mounting and air bearing clamping assembly, as well as contactless integration to a waste assembly, together provide for the ready interchangeability of a plurality of printhead units in a printing system during a printing process, while at the same time preventing cross-contamination of a plurality of end-user selected inks contained in each of a plurality of printhead units.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: December 3, 2019
    Assignee: Kateeva, Inc.
    Inventors: Justin Mauck, Alexander Sou-Kang Ko, Eliyahu Vronsky
  • Patent number: 10468279
    Abstract: Apparatus and techniques are described herein for use in manufacturing electronic devices. such as can include organic light emitting diode (OLED) devices. Such apparatus and techniques can include using one or more modules having a controlled environment. For example, a substrate can be received from a printing system located in a first processing environment, and the substrate can be provided a second processing environment, such as to an enclosed thermal treatment module comprising a controlled second processing environment. The second processing environment can include a purified gas environment having a different composition than the first processing environment.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: November 5, 2019
    Assignee: Kateeva, Inc.
    Inventors: Conor F. Madigan, Eliyahu Vronsky, Alexander Sou-Kang Ko, Justin Mauck
  • Patent number: 10442226
    Abstract: The present teachings relate to various embodiments of an hermetically-sealed gas enclosure assembly and system that can be readily transportable and assemblable and provide for maintaining a minimum inert gas volume and maximal access to various devices and apparatuses enclosed therein. Various embodiments of an hermetically-sealed gas enclosure assembly and system of the present teachings can have a gas enclosure assembly constructed in a fashion that minimizes the internal volume of a gas enclosure assembly, and at the same time optimizes the working space to accommodate a variety of footprints of various OLED printing systems. Various embodiments of a gas enclosure assembly so constructed additionally provide ready access to the interior of a gas enclosure assembly from the exterior during processing and readily access to the interior for maintenance, while minimizing downtime.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: October 15, 2019
    Assignee: Kateeva, Inc.
    Inventors: Justin Mauck, Alexander Sou-Kang Ko, Eliyahu Vronsky, Shandon Alderson
  • Patent number: 10434804
    Abstract: The present teachings relate to various embodiments of a gas enclosure system that can have various components comprising a particle control system that can provide a low-particle zone proximal to a substrate. Various components of a particle control system can include a gas circulation and filtration system, a low-particle-generating motion system for moving a printhead assembly relative to a substrate, a service bundle housing exhaust system, and a printhead assembly exhaust system. In addition to maintaining substantially low levels for each species of various reactive species, including various reactive atmospheric gases, such as water vapor and oxygen, for various embodiments of a gas enclosure system that have a particle control system, an on-substrate particle specification can be readily met. Accordingly, processing of various substrates in an inert, low-particle gas environment according to systems and methods of the present teachings can have substantially lower manufacturing defects.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: October 8, 2019
    Assignee: Kateeva, Inc.
    Inventors: Justin Mauck, Alexander Sou-Kang Ko, Eliyahu Vronsky, Shandon Alderson, Alexey Stepanov
  • Patent number: 10414181
    Abstract: The present teachings disclose various embodiments of a printing system for printing a substrate, in which the printing system can be housed in a gas enclosure, where the environment within the enclosure can be maintained as a controlled printing environment. A controlled environment of the present teachings can include control of the type of gas environment within the gas enclosure, the size and level particulate matter within the enclosure, control of the temperature within the enclosure and control of lighting. Various embodiments of a printing system of the present teachings can include a Y-axis motion system and a Z-axis moving plate that are configured to substantially decrease excess thermal load within the enclosure by, for example, eliminating or substantially minimizing the use of conventional electric motors.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: September 17, 2019
    Inventors: Robert B. Lowrance, Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Aleksey Khrustalev, Karl Mathia, Shandon Alderson
  • Publication number: 20190270325
    Abstract: The present teachings disclose various embodiments of a printing system for printing a substrate, in which the printing system can be housed in a gas enclosure, where the environment within the enclosure can be maintained as a controlled printing environment. A controlled environment of the present teachings can include control of the type of gas environment within the gas enclosure, the size and level particulate matter within the enclosure, control of the temperature within the enclosure and control of lighting. Various embodiments of a printing system of the present teachings can include a Y-axis motion system and a Z-axis moving plate that are configured to substantially decrease excess thermal load within the enclosure by, for example, eliminating or substantially minimizing the use of conventional electric motors.
    Type: Application
    Filed: May 20, 2019
    Publication date: September 5, 2019
    Inventors: Robert B. Lowrance, Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Aleksey Khrustalev, Karl Mathia, Shandon Alderson
  • Publication number: 20190219285
    Abstract: The present teachings relate to various embodiments of an hermetically-sealed gas enclosure assembly and system that can be readily transportable and assemblable and provide for maintaining a minimum inert gas volume and maximal access to various devices and apparatuses enclosed therein. Various embodiments of an hermetically-sealed gas enclosure assembly and system of the present teachings can have a gas enclosure assembly constructed in a fashion that minimizes the internal volume of a gas enclosure assembly, and at the same time optimizes the working space to accommodate a variety of footprints of various OLED printing systems. Various embodiments of a gas enclosure assembly so constructed additionally provide ready access to the interior of a gas enclosure assembly from the exterior during processing and readily access to the interior for maintenance, while minimizing downtime.
    Type: Application
    Filed: March 22, 2019
    Publication date: July 18, 2019
    Applicant: Kateeva, Inc.
    Inventors: Justin Mauck, Alexander Sou-Kang Ko, Eliyahu Vronsky, Shandon Alderson
  • Publication number: 20190193439
    Abstract: The present teachings relate to various embodiments of an hermetically-sealed gas enclosure assembly and system that can be readily transportable and assemblable and provide for maintaining a minimum inert gas volume and maximal access to various devices and apparatuses enclosed therein. Various embodiments of an hermetically-sealed gas enclosure assembly and system of the present teachings can have a gas enclosure assembly constructed in a fashion that minimizes the internal volume of a gas enclosure assembly, and at the same time optimizes the working space to accommodate a variety of footprints of various OLED printing systems. Various embodiments of a gas enclosure assembly so constructed additionally provide ready access to the interior of a gas enclosure assembly from the exterior during processing and readily access to the interior for maintenance, while minimizing downtime.
    Type: Application
    Filed: February 27, 2019
    Publication date: June 27, 2019
    Applicant: Kateeva, Inc.
    Inventors: Justin Mauck, Alexander Sou-Kang Ko, Eliyahu Vronsky, Shandon Alderson
  • Publication number: 20190193436
    Abstract: The present teachings relate to various embodiments of a gas enclosure system that can have a particle control system that can include a multi-zone gas circulation and filtration system, a low-particle-generating X-axis linear bearing system for moving a printhead assembly relative to a substrate, a service bundle housing exhaust system, and a printhead assembly exhaust system. Various components of a particle control system can include a tunnel circulation and filtration system that can be in flow communication with bridge circulation and filtration system. Various embodiments of a tunnel circulation and filtration system can provide cross-flow circulation and filtration of gas about a floatation table of a printing system. Various embodiments of a gas enclosure system can have a bridge circulation and filtration system that can provide circulation and filtration of gas about a printing system bridge and related apparatuses and devices.
    Type: Application
    Filed: January 8, 2019
    Publication date: June 27, 2019
    Applicant: Kateeva, Inc.
    Inventors: Justin Mauck, Alexander Sou-Kang Ko, Eliyahu Vronsky, Prahallad Iyengar, Digby Pun
  • Patent number: 10309665
    Abstract: The present teachings relate to various embodiments of an hermetically-sealed gas enclosure assembly and system that can be readily transportable and assemblable and provide for maintaining a minimum inert gas volume and maximal access to various devices and apparatuses enclosed therein. Various embodiments of an hermetically-sealed gas enclosure assembly and system of the present teachings can have a gas enclosure assembly constructed in a fashion that minimizes the internal volume of a gas enclosure assembly, and at the same time optimizes the working space to accommodate a variety of footprints of various OLED printing systems. Various embodiments of a gas enclosure assembly so constructed additionally provide ready access to the interior of a gas enclosure assembly from the exterior during processing and readily access to the interior for maintenance, while minimizing downtime.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: June 4, 2019
    Assignee: Kateeva, Inc.
    Inventors: Justin Mauck, Alexander Sou-Kang Ko, Eliyahu Vronsky, Shandon Alderson
  • Patent number: 10214037
    Abstract: The present teachings relate to various embodiments of a gas enclosure system that can have a particle control system that can include a multi-zone gas circulation and filtration system, a low-particle-generating X-axis linear bearing system for moving a printhead assembly relative to a substrate, a service bundle housing exhaust system, and a printhead assembly exhaust system. Various components of a particle control system can include a tunnel circulation and filtration system that can be in flow communication with bridge circulation and filtration system. Various embodiments of a tunnel circulation and filtration system can provide cross-flow circulation and filtration of gas about a floatation table of a printing system. Various embodiments of a gas enclosure system can have a bridge circulation and filtration system that can provide circulation and filtration of gas about a printing system bridge and related apparatuses and devices.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: February 26, 2019
    Assignee: Kateeva, Inc.
    Inventors: Justin Mauck, Alexander Sou-Kang Ko, Eliyahu Vronsky, Prahallad Iyengar, Digby Pun
  • Publication number: 20180370263
    Abstract: The present teachings relate to various embodiments of a gas enclosure system that can have various components comprising a particle control system that can provide a low-particle zone proximal to a substrate. Various components of a particle control system can include a gas circulation and filtration system, a low-particle-generating motion system for moving a printhead assembly relative to a substrate, a service bundle housing exhaust system, and a printhead assembly exhaust system. In addition to maintaining substantially low levels for each species of various reactive species, including various reactive atmospheric gases, such as water vapor and oxygen, for various embodiments of a gas enclosure system that have a particle control system, an on-substrate particle specification can be readily met. Accordingly, processing of various substrates in an inert, low-particle gas environment according to systems and methods of the present teachings can have substantially lower manufacturing defects.
    Type: Application
    Filed: August 13, 2018
    Publication date: December 27, 2018
    Applicant: Kateeva, Inc.
    Inventors: Justin Mauck, Alexander Sou-Kang Ko, Eliyahu Vronsky, Shandon Alderson, Alexey Stepanov
  • Publication number: 20180264862
    Abstract: The present teachings disclose various embodiments of a printing system for printing a substrate, in which the printing system can be housed in a gas enclosure, where the environment within the enclosure can be maintained as a controlled printing environment. A controlled environment of the present teachings can include control of the type of gas environment within the gas enclosure, the size and level particulate matter within the enclosure, control of the temperature within the enclosure and control of lighting. Various embodiments of a printing system of the present teachings can include a Y-axis motion system and a Z-axis moving plate that are configured to substantially decrease excess thermal load within the enclosure by, for example, eliminating or substantially minimizing the use of conventional electric motors.
    Type: Application
    Filed: December 8, 2017
    Publication date: September 20, 2018
    Inventors: Robert B. Lowrance, Alexander Sou-Kang Ko, Justin Mauck, Eliyahu Vronsky, Aleksey Khrustalev, Karl Mathia, Shandon Alderson