Patents by Inventor Jy-Jen F. Sah

Jy-Jen F. Sah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120265383
    Abstract: A vehicle includes an engine, a motor, and a gearbox. A clutch is configured to engage to transfer a reactive torque to at least one of the engine, the motor, and the gearbox. The clutch is configured to disengage during a transition from a present operating mode to a target operating mode. A controller is configured to determine an expected slip direction of the clutch, define a non-zero value based at least in part on the expected slip direction, and command the reactive torque to the non-zero value to control the clutch to induce slip during the transition from the present operating mode to the target operating mode.
    Type: Application
    Filed: April 15, 2011
    Publication date: October 18, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Lawrence A. Kaminsky, Jy-Jen F. Sah
  • Patent number: 8287427
    Abstract: A multi-mode, electrically variable, hybrid transmission and improved shift control methods for controlling the same are provided herein. The hybrid transmission configuration and shift control methodology presented herein allow for shifting between different EVT modes when the engine is off, while maintaining propulsion capability and minimum time delay for engine autostart. The shift control maneuver is able to maintain zero engine speed while producing continuous output torque throughout the shift by eliminating transition through a fixed gear mode or neutral state. Optional oncoming clutch pre-fill strategies and mid-point abort logic minimize the time to complete shift, and reduce the engine start delay if an intermittent autostart operation is initiated.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: October 16, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Jy-Jen F. Sah, Brendan M. Conlon
  • Patent number: 8290681
    Abstract: A method for controlling a powertrain including an electro-mechanical transmission coupled to an engine and an electric machine includes monitoring a desired input speed; signal processing the desired input speed to create a lead control signal to control the engine, wherein the signal processing includes low pass filtering the desired input speed and applying system constraint limits upon the desired input speed; signal processing the desired input speed to create an immediate control signal to control the electric machine, wherein the signal processing includes delaying the desired input speed by a lead period, low pass filtering the desired input speed, and applying system constraint limits upon the desired input speed; and controlling the powertrain through a powertrain transition based upon the lead control signal and said immediate control signal.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: October 16, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler Group LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Lawrence A. Kaminsky, Anthony H. Heap, Jy-Jen F. Sah
  • Patent number: 8290673
    Abstract: A system includes a friction element having a driving mechanism and a driven mechanism. At least one of the driving mechanism and the driven mechanism is configured to rotate. A drive unit is configured to provide a torque to at least one of the driving mechanism and the driven mechanism. A control processor is configured to diagnose a friction element failure based on a slip speed, which is the difference between rotational speeds of the driving mechanism and the driven mechanism. The control processor is further configured to induce a slip condition as part of a shift process and diagnose the friction element failure if the derived slip speed is substantially zero after inducing the slip condition.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: October 16, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Syed Naqi, Ali K. Naqvi, Lawrence A. Kaminsky, Jy-Jen F. Sah, James R. Bartshe, Peter E. Wu
  • Patent number: 8285432
    Abstract: A method for controlling a powertrain system including a transmission mechanically coupled to an engine and an electric machine includes monitoring operator inputs to an accelerator pedal, determining a preferred operating point of the powertrain based upon the operator inputs, determining a preferred operating range state of the transmission based upon the preferred operating point, determining lead control signals for the engine and the transmission based upon the preferred operating point and the preferred operating range state of the transmission, determining immediate control signals for the electric machine and the transmission, controlling operation of the engine based upon the lead control signals for the engine and the transmission, and controlling operation of the electric machine based upon the immediate control signals for the electric machine and the transmission.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: October 9, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler Group LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Lawrence A. Kaminsky, Jy-Jen F. Sah
  • Patent number: 8282526
    Abstract: A method for controlling a powertrain comprising an electro-mechanical transmission mechanically-operatively coupled to an engine and an electric machine adapted to selectively transmit mechanical power to an output member through selective application of a plurality of torque-transfer clutches includes monitoring a clutch slip speed, synchronizing an oncoming clutch, and constraining reactive clutch torque limits for the oncoming clutch to achieve a reactive clutch torque that is less than an estimated clutch torque capacity.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: October 9, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler Group LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Lawrence A. Kaminsky, Jy-Jen F. Sah
  • Patent number: 8266986
    Abstract: A hydraulic control system for a transmission includes a motor, a sump for storing a hydraulic fluid, and a dual element pump connected to the motor. The dual element pump has at least one input port connected to the sump, a first outlet port, and a second outlet port. The dual element pump provides a first volume of hydraulic fluid to the first outlet port and provides a second volume of hydraulic fluid to the second outlet port. The first volume is greater than the second volume. The first outlet port is connected to a diversion valve. The second outlet port is connected to a high pressure hydraulic circuit. The diversion valve is operable to transmit the hydraulic fluid from the first outlet port to a low pressure hydraulic circuit and the high pressure hydraulic circuit.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: September 18, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Alan G. Holmes, Jy-Jen F. Sah, Kevin Michael Dougan, Norman Schoenek, Michael R. Schmidt
  • Publication number: 20120211324
    Abstract: A vehicle includes a pump configured to output fluid at a commanded pressure when driven by a motor. A first hydraulic device is operably connected to the pump and configured to operate in response to receiving fluid at a first pressure. A second hydraulic device is operably connected to the pump and configured to execute a shift command in response to receiving fluid at a second pressure. A control processor is configured to control the commanded pressure in accordance with a priority scheme. That is, the control processor is configured to direct at least a portion of the commanded pressure from the first hydraulic device to the second hydraulic device for a duration of a shift command based on the priority scheme and redirect at least a portion of the commanded pressure to the first hydraulic device upon completion of the shift action.
    Type: Application
    Filed: February 17, 2011
    Publication date: August 23, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jy-Jen F. Sah, Ali K. Naqvi, Lisa M. Talarico, Syed Naqi
  • Publication number: 20120209461
    Abstract: A vehicle includes an engine, a first motor, and a second motor, each configured to generate a torque. A gearbox is configured to receive the generated torque. An oncoming clutch is configured to engage during a transition from a present operating mode to a target operating mode. A controller is configured to identify a speed profile associated with a transition to the target operating mode. The speed profile defines a calibrated profile time that represents an amount of time to synchronize the oncoming clutch during the transition from the present operating mode to the target operating mode. The controller is configured to adjust the calibrated profile time in real time to define an adjusted profile time and control the engagement of the oncoming clutch during the transition from the present operating mode to the target operating mode based at least in part on the adjusted profile time.
    Type: Application
    Filed: February 10, 2011
    Publication date: August 16, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Lawrence A. Kaminsky, Jy-Jen F. Sah
  • Publication number: 20120191283
    Abstract: A powertrain includes an electro-mechanical transmission mechanically-operatively coupled to an internal combustion engine and first and second electric machines adapted to selectively transmit mechanical power to an output member. An apparatus for controlling the powertrain includes the first and second electric machines, a first electric machine cooling circuit directing a cooling hydraulic flow to the first electric machine, a second electric machine cooling circuit directing a cooling hydraulic flow to the second electric machine, a hydraulic control system receiving a hydraulic flow and selectively channeling the hydraulic flow to the first and second electric machine cooling circuits, and an active electric machine cooling control system monitoring temperatures of the first and second electric machines, monitoring operation of the hydraulic control system, and selectively controlling the hydraulic control system.
    Type: Application
    Filed: March 29, 2012
    Publication date: July 26, 2012
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS LLC, Bayerische Motoren Werke Aktiengesellschaft, Chrysler LLC, Daimler AG
    Inventors: Aniket Kothari, Jy-Jen F. Sah, Ali K. Naqvi, William Joseph Gourlay
  • Patent number: 8221285
    Abstract: A powertrain includes an electromechanical transmission mechanically-operatively coupled to an internal combustion engine and an electric machine adapted to selectively transmit mechanical power to an output member. A method for controlling the powertrain includes commanding a shift from a first operating range state to a second operating range state, identifying an off-going clutch, controlling torque output from said electric machine to offload reactive torque transmitted through said off-going clutch, selectively applying an oncoming clutch to offload reactive torque transmitted through said off-going clutch, and reducing a clutch torque capacity of said off-going clutch when said reactive torque transmitted through said off-going clutch is substantially zero.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: July 17, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler Group LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Jy-Jen F. Sah
  • Patent number: 8224544
    Abstract: A method and apparatus to control an electro-mechanical transmission is provided, selectively operative in a plurality of fixed gear modes and continuously variable modes, and comprising first and second electrical machines and hydraulically-actuated clutches. Included is launching a vehicle so equipped, comprising operating the electro-mechanical transmission in a continuously variable mode to transmit motive torque from the first electrical machine to the driveline, and, selectively increasing an operating speed of the engine and selectively actuating a second clutch to transmit motive torque generated by the second electrical machine when an operator torque request exceeds a predetermined threshold.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: July 17, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Jy-Jen F. Sah, Anthony H. Heap, Gregory A. Hubbard
  • Patent number: 8214093
    Abstract: A powertrain includes an electro-mechanical transmission mechanically-operatively coupled to an internal combustion engine and an electric machine adapted to selectively transmit mechanical power to an output member. A method for controlling the powertrain includes operating the transmission in an operating range state wherein input speed can operate independent of output speed and wherein a reactive torque is transmitted through the transmission. The method further includes monitoring commands affecting a requested output torque, monitoring a calculated output torque, and prioritizing between an input acceleration of the transmission and an output torque of the transmission based upon whether operating the transmission in the operating range state is in transient operation or stable operation.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: July 3, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler Group LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Lawrence A. Kaminsky, Jy-Jen F. Sah
  • Patent number: 8187145
    Abstract: A method for controlling hydraulic line pressure of a hydraulic control system in an electro-mechanical transmission mechanically-operatively coupled to an internal combustion engine and an electric machine adapted to selectively transmit mechanical power to an output member via selective application of a plurality of hydraulically-applied torque transfer clutches includes monitoring requirements for transmission of clutch reactive torque in one of the clutches, monitoring a hydraulic line pressure within the hydraulic control system, determining a minimum clutch torque capacity required to keep the clutch from slipping, determining a hydraulic line pressure required to create the minimum clutch torque capacity, and modulating hydraulic line pressure applied to the clutch by modulating operation of the hydraulic control system based upon the hydraulic line pressure required to create the minimum clutch torque capacity.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: May 29, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Lawrence A. Kaminsky, Anthony H. Heap, Jy-Jen F. Sah
  • Patent number: 8182390
    Abstract: A method of clutch control includes engaging a first holding clutch to place the transmission in a first neutral mode and predicting a first EVT mode. The method begins tracking a first output clutch and predicts a second EVT mode. Tracking the first output clutch ends and tracking a second holding clutch begins. The method engages the second holding clutch to place the transmission in a second neutral mode, ending tracking of the second holding clutch. The first holding clutch is disengaged to place the transmission in a third neutral mode and the method begins tracking a second output clutch. Engaging the second output clutch places the transmission in the second EVT mode and ends tracking of the second output clutch. The engine may be placed into a speed control mode and the transmission placed into a full hydraulic neutral mode.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: May 22, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Jy-Jen F. Sah, Lawrence A. Kaminsky
  • Publication number: 20120121438
    Abstract: A fluid system includes a fluidic device, an electrically-actuated fluid pump having a pump motor, and a control system. The control system controls a speed of the pump using a commanded torque value, and calculates a feedforward torque term as a function of a set of operating values, including a desired fluid line pressure. The control system determines the speed control torque term using pump speed error, and adds the feedforward torque term to the speed control torque term to calculate the commanded torque value. The speed control torque term may be determined using an integral term of a proportional integral derivative (PID) portion of the control system. A method for controlling pump speed includes calculating the feedforward torque term, determining the speed control torque term using a pump speed error, and adding the feedforward torque term to the speed control torque term to calculate the commanded torque value.
    Type: Application
    Filed: November 12, 2010
    Publication date: May 17, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Jy-Jen F. Sah, Ali K. Naqvi, Vincent Rawls, Nitinkumar R. Patel
  • Patent number: 8167773
    Abstract: A method for controlling a powertrain including an transmission coupled to an engine and an electric machine and a hydraulic control system providing hydraulic flow to a cooling circuit of the electric machine, wherein the transmission is adapted to selectively transmit mechanical power to an output member, includes monitoring a temperature of the electric machine, determining a cooling flow requirement for the cooling circuit based upon the temperature of the electric machine, comparing the cooling flow requirement to a threshold cooling flow, and requesting active electric machine cooling of the electric machine based upon the comparing.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: May 1, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Aniket Kothari, Jy-Jen F. Sah, Ali K Naqvi, William Joseph Gourlay
  • Patent number: 8170762
    Abstract: A method for controlling a hydraulic flow within a powertrain comprising an electromechanical transmission mechanically-operatively coupled to an engine adapted to selectively transmit power to an output, wherein the transmission utilizes a hydraulic control system serving a number of hydraulic oil consuming functions includes monitoring minimum hydraulic pressure requirements for each of the functions, determining a requested hydraulic pressure based upon the monitoring minimum hydraulic pressure requirements and physical limits of the hydraulic control system including a maximum pressure, determining a desired flow utilizing a hydraulic control system flow model based upon the requested hydraulic pressure, and utilizing the desired flow to control an auxiliary hydraulic pump.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: May 1, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Michael D. Foster, Eric S. Tryon, Jy-Jen F. Sah, Ali K Naqvi
  • Patent number: 8170764
    Abstract: A method to control a powertrain including a transmission, an engine, and an electric machine includes monitoring an input speed, monitoring an output speed, upon initiation of a transmission shift, determining a plurality of input acceleration profiles for controlling the engine and electric machine during the shift, identifying an input acceleration constraint affecting one of the input acceleration profiles, reprofiling the input acceleration profiles based upon the identified input acceleration constraint, and controlling operation of the engine and electric machine based upon the reprofiled input acceleration profiles.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: May 1, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Lawrence A. Kaminsky, Jy-Jen F. Sah
  • Publication number: 20120089282
    Abstract: A method for controlling a hybrid electric vehicle having a control system, a traction motor, and an engine includes generating an activation signal during a predetermined vehicle maneuver. The predetermined vehicle maneuver is a threshold hard braking maneuver on a surface having a low coefficient of friction. The method also includes processing the activation signal using the control system, and using the traction motor to command an injection or a passing of a feed-forward torque to the driveline of the vehicle. The feed-forward torque is in the same direction as the engine torque, and prevents a drive shaft of the engine from spinning in reverse during the maneuver. The method may include generating the activation signal in response to detecting an active state of the ABS controller. A hybrid electric vehicle includes an engine, a traction motor, and a control system configured to execute the above method.
    Type: Application
    Filed: February 17, 2011
    Publication date: April 12, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jy-Jen F. Sah, Robert L. Morris, Pinaki Gupta, Gil J. Mendoza