Patents by Inventor Kailash Kiran Patalay

Kailash Kiran Patalay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10345155
    Abstract: The embodiments described herein generally relate to systems for noise compensation for proper temperature detection in thermal processing chambers and devices for achieving the same. In one embodiment, a system is disclosed herein. The system includes a processing chamber, a substrate, a pyrometer, and a controller. The processing chamber is configured to process a substrate. The substrate support is disposed in the processing chamber. The pyrometer is positioned to receive radiation emitted by a substrate or a component of the processing chamber and generating a pyrometer signal indicative of the received radiation. The controller is configured to subtract a time invariant noise component and a time variant noise component from the pyrometer signal during processing of a substrate.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: July 9, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kailash Kiran Patalay, Aaron Muir Hunter
  • Patent number: 10306708
    Abstract: Embodiments of the disclosure generally relate to a reflector for use in a thermal processing chamber. In one embodiment, the thermal processing chamber generally includes an upper dome, a lower dome opposing the upper dome, the upper dome and the lower dome defining an internal volume of the processing chamber, a substrate support disposed within the internal volume, and a reflector positioned above and proximate to the upper dome, wherein the reflector has a heat absorptive coating layer deposited on a side of the reflector facing the substrate support.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: May 28, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kin Pong Lo, Paul Brillhart, Balasubramanian Ramachandran, Satheesh Kuppurao, Daniel Redfield, Joseph M. Ranish, James Francis Mack, Kailash Kiran Patalay, Michael Olsen, Eddie Feigel, Richard Halpin, Brett Vetorino
  • Publication number: 20180084610
    Abstract: Embodiments of the disclosure generally relate to a reflector for use in a thermal processing chamber. In one embodiment, the thermal processing chamber generally includes an upper dome, a lower dome opposing the upper dome, the upper dome and the lower dome defining an internal volume of the processing chamber, a substrate support disposed within the internal volume, and a reflector positioned above and proximate to the upper dome, wherein the reflector has a heat absorptive coating layer deposited on a side of the reflector facing the substrate support.
    Type: Application
    Filed: November 28, 2017
    Publication date: March 22, 2018
    Inventors: Kin Pong LO, Paul BRILLHART, Ramachandran BALASUBRAMANIAN, Satheesh KUPPURAO, Daniel REDFIELD, Joseph M. RANISH, James Francis MACK, Kailash Kiran PATALAY, Michael OLSEN, Eddie FEIGEL, Richard HALPIN, Brett VETORINO
  • Publication number: 20180045575
    Abstract: The embodiments described herein generally relate to systems for noise compensation for proper temperature detection in thermal processing chambers and devices for achieving the same. In one embodiment, a system is disclosed herein. The system includes a processing chamber, a substrate, a pyrometer, and a controller. The processing chamber is configured to process a substrate. The substrate support is disposed in the processing chamber. The pyrometer is positioned to receive radiation emitted by a substrate or a component of the processing chamber and generating a pyrometer signal indicative of the received radiation. The controller is configured to subtract a time invariant noise component and a time variant noise component from the pyrometer signal during processing of a substrate.
    Type: Application
    Filed: August 1, 2017
    Publication date: February 15, 2018
    Inventors: Kailash Kiran PATALAY, Aaron Muir HUNTER
  • Publication number: 20180005856
    Abstract: Embodiments of the invention relate to a dome assembly. The dome assembly includes an upper dome comprising a central window, and an upper peripheral flange engaging the central window at a circumference of the central window, wherein a tangent line on an inside surface of the central window that passes through an intersection of the central window and the upper peripheral flange is at an angle of about 8° to about 16° with respect to a planar upper surface of the peripheral flange, a lower dome comprising a lower peripheral flange and a bottom connecting the lower peripheral flange with a central opening, wherein a tangent line on an outside surface of the bottom that passes through an intersection of the bottom and the lower peripheral flange is at an angle of about 8° to about 16° with respect to a planar bottom surface of the lower peripheral flange.
    Type: Application
    Filed: September 18, 2017
    Publication date: January 4, 2018
    Inventors: Anzhong CHANG, Paul BRILLHART, Surajit KUMAR, Satheesh KUPPURAO, Mehmet Tugrul SAMIR, David K. CARLSON, Steve ABOAGYE, Anh N. NGUYEN, Kailash Kiran PATALAY, Joseph M. RANISH, Oleg V. SEREBRYANOV, Dongming IU, Shu-Kwan LAU, Zuoming ZHU, Herman DINIZ
  • Publication number: 20170362702
    Abstract: In one embodiment, a gas distribution assembly includes an injection block having at least one inlet to deliver a precursor gas to a plurality of plenums from at least two gas sources, a perforated plate bounding at least one side of each of the plurality of plenums, at least one radiant energy source positioned within each of the plurality of plenums to provide energy to the precursor gas from one or both of the at least two gas sources and flow an energized gas though openings in the perforated plate and into a chamber, and a variable power source coupled to each of the radiant energy sources positioned within each of the plurality of plenums.
    Type: Application
    Filed: March 3, 2014
    Publication date: December 21, 2017
    Applicant: Applied Materials, Inc.
    Inventors: David Keith CARLSON, Satheesh KUPPURAO, Howard BECKFORD, Herman DINIZ, Kailash Kiran PATALAY, Brian Hayes BURROWS, Jeffery Ronald CAMPBELL, Zuoming ZHU, Xiaowei LI, Errol Antonio SANCHEZ
  • Patent number: 9832816
    Abstract: Embodiments of the disclosure generally relate to a reflector for use in a thermal processing chamber. In one embodiment, the thermal processing chamber generally includes an upper dome, a lower dome opposing the upper dome, the upper dome and the lower dome defining an internal volume of the processing chamber, a substrate support disposed within the internal volume, and a reflector positioned above and proximate to the upper dome, wherein the reflector has a heat absorptive coating layer deposited on a side of the reflector facing the substrate support.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: November 28, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kin Pong Lo, Paul Brillhart, Balasubramanian Ramachandran, Satheesh Kuppurao, Daniel Redfield, Joseph M. Ranish, James Francis Mack, Kailash Kiran Patalay, Michael Olsen, Eddie Feigel, Richard Halpin, Brett Vetorino
  • Patent number: 9768043
    Abstract: Embodiments of the present disclosure relate to a dome assembly. The dome assembly includes an upper dome including a central window, and an upper peripheral flange engaging the central window at a circumference of the central window, wherein a tangent line on an inside surface of the central window that passes through an intersection of the central window and the upper peripheral flange is at an angle of about 8° to about 16° with respect to a planar upper surface of the peripheral flange, a lower dome comprising a lower peripheral flange and a bottom connecting the lower peripheral flange with a central opening, wherein a tangent line on an outside surface of the bottom that passes through an intersection of the bottom and the lower peripheral flange is at an angle of about 8° to about 16° with respect to a planar bottom surface of the lower peripheral flange.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: September 19, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Anzhong Chang, Paul Brillhart, Surajit Kumar, Satheesh Kuppurao, Mehmet Tugrul Samir, David K. Carlson, Steve Aboagye, Anh N. Nguyen, Kailash Kiran Patalay, Joseph M. Ranish, Oleg Serebryanov, Dongming Iu, Shu-Kwan Lau, Zuoming Zhu, Herman Diniz
  • Patent number: 9739666
    Abstract: The embodiments described herein generally relate to methods of noise compensation for proper temperature detection in thermal processing chambers and devices for achieving the same. Methods can include determining noise produced by a lamp zone and extrapolating the noise from the detected photocurrent. Devices can include a processing chamber, a substrate support disposed in the processing chamber, the substrate support having a high thermal mass, a pyrometer below the substrate support and oriented to view radiation emitted by the substrate and a controller configured to subtract a time invariant noise component and a time variant noise component from the pyrometer signal.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: August 22, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kailash Kiran Patalay, Aaron Muir Hunter
  • Patent number: 8967860
    Abstract: Embodiments of the present invention generally relate to methods and apparatus for measuring, calibrating, and controlling substrate temperature during low temperature and high temperature processing.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 3, 2015
    Assignee: Applied Materials, Inc.
    Inventor: Kailash Kiran Patalay
  • Patent number: 8951351
    Abstract: Methods and apparatus for reducing autodoping and backside defects on a substrate during epitaxial deposition processes are provided herein. In some embodiments, an apparatus for reducing autodoping and backside defects on a substrate includes a substrate support ring having a substrate holder structure configured to support the substrate in a position for processing along an edge defined by the backside of the substrate and a sidewall of the substrate or along a plurality of discrete points on or proximate to the edge; and a spacer ring for positioning the substrate support ring above a susceptor plate to define a substrate gap region between the susceptor plate and the backside of the substrate, the spacer ring comprising a plurality of openings formed therethrough that facilitate passage of a gas into and out of the substrate gap region.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: February 10, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Kailash Kiran Patalay, Craig Metzner, Jean Vatus
  • Publication number: 20150023385
    Abstract: The embodiments described herein generally relate to methods of noise compensation for proper temperature detection in thermal processing chambers and devices for achieving the same. Methods can include determining noise produced by a lamp zone and extrapolating the noise from the detected photocurrent. Devices can include a processing chamber, a substrate support disposed in the processing chamber, the substrate support having a high thermal mass, a pyrometer below the substrate support and oriented to view radiation emitted by the substrate and a controller configured to subtract a time invariant noise component and a time variant noise component from the pyrometer signal.
    Type: Application
    Filed: April 21, 2014
    Publication date: January 22, 2015
    Inventors: Kailash Kiran PATALAY, Aaron Muir HUNTER
  • Publication number: 20140376898
    Abstract: Embodiments of the disclosure generally relate to a reflector for use in a thermal processing chamber. In one embodiment, the thermal processing chamber generally includes an upper dome, a lower dome opposing the upper dome, the upper dome and the lower dome defining an internal volume of the processing chamber, a substrate support disposed within the internal volume, and a reflector positioned above and proximate to the upper dome, wherein the reflector has a heat absorptive coating layer deposited on a side of the reflector facing the substrate support.
    Type: Application
    Filed: April 22, 2014
    Publication date: December 25, 2014
    Inventors: Kin Pong Lo, Paul Brillhart, Balasubramanian Ramachandran, Satheesh Kuppurao, Daniel Redfield, Joseph M. Ranish, James Francis Mack, Kailash Kiran Patalay, Michael Olsen, Eddie Feigel, Richard Halpin, Brett Vetorino
  • Publication number: 20140345525
    Abstract: Embodiments disclosed herein relate to coated liner assemblies for use in a semiconductor processing chamber. In one embodiment, a liner assembly for use in a semiconductor processing chamber includes a liner body having a cylindrical ring form and a coating layer coating the liner body, wherein the coating layer is opaque at one or more wavelengths between about 200 nm and about 5000 nm. In another embodiment, an apparatus for depositing a dielectric layer on a substrate includes a processing chamber having an interior volume defined in a chamber body of the processing chamber, a liner assembly disposed in the processing chamber, wherein the liner assembly further comprises a liner body having a cylindrical ring form, and a coating layer coating an outer wall of the liner body and facing the chamber body, wherein the coating layer is opaque at one or more wavelengths between about 200 nm and about 5000 nm.
    Type: Application
    Filed: May 7, 2014
    Publication date: November 27, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Joseph M. RANISH, Satheesh KUPPURAO, Kailash Kiran PATALAY, Paul BRILLHART
  • Publication number: 20140345526
    Abstract: Embodiments disclosed herein relate to coated liner assemblies for use in a semiconductor processing chamber. In one embodiment, a liner assembly for use in a semiconductor processing chamber includes a liner body having a cylindrical ring form and a coating layer coating the liner body, wherein the coating layer is opaque at one or more wavelengths between about 200 nm and about 5000 nm. In another embodiment, an apparatus for depositing a dielectric layer on a substrate includes a processing chamber having an interior volume defined in a chamber body of the processing chamber, a liner assembly disposed in the processing chamber, wherein the liner assembly further comprises a liner body having a cylindrical ring form, and a coating layer coating an outer wall of the liner body and facing the chamber body, wherein the coating layer is opaque at one or more wavelengths between about 200 nm and about 5000 nm.
    Type: Application
    Filed: May 22, 2014
    Publication date: November 27, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Joseph M. RANISH, Satheesh KUPPURAO, Kailash Kiran PATALAY, Paul BRILLHART
  • Publication number: 20140199056
    Abstract: Embodiments of the invention relate to a dome assembly. The dome assembly includes an upper dome comprising a central window, and an upper peripheral flange engaging the central window at a circumference of the central window, wherein a tangent line on an inside surface of the central window that passes through an intersection of the central window and the upper peripheral flange is at an angle of about 8° to about 16° with respect to a planar upper surface of the peripheral flange, a lower dome comprising a lower peripheral flange and a bottom connecting the lower peripheral flange with a central opening, wherein a tangent line on an outside surface of the bottom that passes through an intersection of the bottom and the lower peripheral flange is at an angle of about 8° to about 16° with respect to a planar bottom surface of the lower peripheral flange.
    Type: Application
    Filed: December 18, 2013
    Publication date: July 17, 2014
    Inventors: Anzhong CHANG, Paul BRILLHART, Surajit KUMAR, Satheesh KUPPURAO, Mehmet Tugrul SAMIR, David K. CARLSON, Steve ABOAGYE, Anh N. NGUYEN, Kailash Kiran PATALAY, Joseph M. RANISH, Oleg SEREBRYANOV, Dongming IU, Shu-Kwan LAU, Zuoming ZHU, Herman DINIZ
  • Publication number: 20140175054
    Abstract: In one embodiment, a gas distribution assembly includes an injection block having at least one inlet to deliver a precursor gas to a plurality of plenums from at least two gas sources, a perforated plate bounding at least one side of each of the plurality of plenums, at least one radiant energy source positioned within each of the plurality of plenums to provide energy to the precursor gas from one or both of the at least two gas sources and flow an energized gas though openings in the perforated plate and into a chamber, and a variable power source coupled to each of the radiant energy sources positioned within each of the plurality of plenums.
    Type: Application
    Filed: March 3, 2014
    Publication date: June 26, 2014
    Applicant: Applied Materials, Inc.
    Inventors: David Keith CARLSON, Satheesh KUPPURAO, Howard BECKFORD, Herman DINIZ, Kailash Kiran PATALAY, Brian Hayes BURROWS, Jeffery Ronald CAMPBELL, Zuoming ZHU, Xiaowei LI, Errol Antonio SANCHEZ
  • Patent number: 8747560
    Abstract: A pedestal positioning assembly system for use in a substrate processing system includes a pedestal rigidly attached to a pedestal shaft, a reference rigidly attached to the substrate processing system, a lateral adjustment assembly to adjust a lateral location of the pedestal relative to the reference, and a vertical adjustment assembly to adjust a tilt of the pedestal relative to the reference. The lateral adjustment assembly and the vertical adjustment assembly are external to a processing chamber and are coupled to the pedestal disposed within the processing chamber through the pedestal shaft. The reference can be a ring and the lateral adjustment assembly substantially centers the pedestal within the ring. A method of adjusting a pedestal includes leveling the pedestal, translating the pedestal, calibrating the pedestal height to a preheat ring level, and checking the level and location of the pedestal while rotating the pedestal.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: June 10, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Richard Collins, Kailash Kiran Patalay, Jean Vatus, Zhepeng Cong
  • Patent number: 8663390
    Abstract: A method and apparatus for delivering precursor materials to a processing chamber is provided. In one embodiment, a deposition apparatus is provided. The apparatus includes a chamber having a longitudinal axis, and a gas distribution assembly coupled to a sidewall of the chamber. The gas distribution assembly comprises a plurality of plenums coupled to one or more gas sources, an energy source positioned to provide energy to each of the plurality of plenums, and a variable power source coupled to the energy source, wherein the gas distribution assembly provides a flow path through the chamber that is normal to the longitudinal axis of the chamber.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: March 4, 2014
    Assignee: Applied Materials, Inc.
    Inventors: David Keith Carlson, Satheesh Kuppurao, Howard Beckford, Herman Diniz, Kailash Kiran Patalay, Brian Hayes Burrows, Jeffrey Ronald Campbell, Zouming Zhu, Xiaowei Li, Errol Antonio Sanchez
  • Patent number: 8512472
    Abstract: Methods and apparatus for controlling temperature and flow characteristics of process gases in a process chamber have been provided herein. In some embodiments, an apparatus for controlling temperature and flow characteristics of a process gas in a process chamber may include a gas pre-heat ring configured to be disposed about a substrate and having a labyrinthine conduit disposed therein, wherein the labyrinthine conduit has an inlet and outlet to facilitate the flow of the process gas therethrough.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: August 20, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jean R. Vatus, Kailash Kiran Patalay