Patents by Inventor Kallol Bera

Kallol Bera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959174
    Abstract: Embodiments described herein relate to magnetic and electromagnetic systems and a method for controlling the density profile of plasma generated in a process volume of a PECVD chamber to affect deposition profile of a film on a substrate and/or facilitate chamber cleaning after processing. In one embodiment, a system is disclosed that includes a rotational magnetic housing disposed about an exterior sidewall of a chamber. The rotational magnetic housing includes a plurality of magnets coupled to a sleeve that are configured to travel in a circular path when the rotational magnetic housing is rotated around the chamber, and a plurality of shunt doors movably disposed between the chamber and the sleeve, wherein each of the shunt doors are configured to move relative to the magnets.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: April 16, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Kallol Bera, Sathya Swaroop Ganta, Timothy Joseph Franklin, Kaushik Alayavalli, Akshay Dhanakshirur, Stephen C. Garner, Bhaskar Kumar
  • Patent number: 11959868
    Abstract: Embodiments disclosed herein include gas concentration sensors, and methods of using such gas concentration sensors. In an embodiment, a gas concentration sensor comprises a first electrode. In an embodiment the first electrode comprises first fingers. In an embodiment, the gas concentration sensor further comprises a second electrode. In an embodiment, the second electrode comprises second fingers that are interdigitated with the first fingers.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: April 16, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Xiaopu Li, Kallol Bera, Yaoling Pan, Kelvin Chan, Amir Bayati, Philip Allan Kraus, Kenric T. Choi, William John Durand
  • Patent number: 11908662
    Abstract: Embodiments described herein relate to apparatus and techniques for radio frequency (RF) phase control in a process chamber. A process volume is defined in the process chamber by a faceplate electrode and a support pedestal. A grounding bowl is disposed within the process chamber about the support pedestal opposite the process volume. The grounding bowl substantially fills a volume other than the process volume below the support pedestal. A phase tuner circuit is coupled to an RF mesh disposed in the support pedestal and the faceplate electrode. The tuner circuit adjusts a phase difference between a phase of the faceplate electrode and a phase of the RF mesh.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: February 20, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Xiaopu Li, Kallol Bera, Edward P. Hammond, IV, Jonghoon Baek, Amit Kumar Bansal, Jun Ma, Satoru Kobayashi
  • Publication number: 20230377855
    Abstract: Embodiments of the present disclosure generally relate to a substrate processing chamber, and methods for cleaning the substrate processing chamber are provided herein. An electrode cleaning ring is disposed in a lower portion of a process volume (e.g., disposed below a substrate support in the process volume). The electrode cleaning ring is a capacitively coupled plasma source. The electrode cleaning ring propagates plasma into the lower portion of the process volume. RF power is provided to the electrode cleaning ring via an RF power feed-through. The RF plasma propagated by the electrode cleaning ring removes deposition residue in the lower portion of the process volume.
    Type: Application
    Filed: May 20, 2022
    Publication date: November 23, 2023
    Inventors: Mukesh Shivakumaraiah CHITRADURGA, Luke BONECUTTER, Sathya Swaroop GANTA, Canfeng LAI, Jay D. PINSON, Kaushik Comandoor ALAYAVALLI, Kallol BERA
  • Patent number: 11823871
    Abstract: Plasma source assemblies, gas distribution assemblies including the plasma source assembly and methods of generating plasma are described. The plasma source assemblies include a powered electrode with a ground electrode adjacent a first side and a dielectric adjacent a second side. A first microwave generator is electrically coupled to the first end of the powered electrode through a first feed and a second microwave generator is electrically coupled to the second end of the powered electrode through a second feed.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: November 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Jozef Kudela, Tsutomu Tanaka, Alexander V. Garachtchenko, Dmitry A. Dzilno, Avinash Shervegar, Kallol Bera, Xiaopu Li, Anantha K. Subramani, John C. Forster
  • Patent number: 11810810
    Abstract: Susceptor assemblies comprising a susceptor base and a plurality of pie-shaped skins thereon are described. A pie anchor can be positioned in the center of the susceptor base to hold the pie-shaped skins in place during processing.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: November 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Kaushal Gangakhedkar, Kallol Bera, Joseph Yudovsky
  • Publication number: 20230116396
    Abstract: Susceptor assemblies comprising a susceptor base and a plurality of pie-shaped skins thereon are described. A pie anchor can be positioned in the center of the susceptor base to hold the pie-shaped skins in place during processing.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 13, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Kaushal Gangakhedkar, Kallol Bera, Joseph Yudovsky
  • Publication number: 20230107392
    Abstract: Methods of generating a plasma in a semiconductor processing chamber comprise: applying a radio frequency (RF) power to generate a plasma in a plasma region of the processing chamber, the processing chamber containing: a showerhead, an ion blocker plate, and a substrate, and the plasma region being defined by a front surface of the showerhead and a back surface of the ion blocker plate; and applying a bias the ion blocker plate so that there is no light-up in the processing chamber. Some methods further include dynamically tuning the bias by assessing conditions of light-up or no light-up and adjusting the bias. Some methods further include applying the bias zonally.
    Type: Application
    Filed: October 1, 2021
    Publication date: April 6, 2023
    Applicant: Applied Materials, Inc
    Inventors: Kallol Bera, Xiaopu Li, Tsutomu Tanaka
  • Patent number: 11581206
    Abstract: Embodiments disclosed herein comprise a sensor. In an embodiment, the sensor comprises a substrate having a first surface and a second surface opposite from the first surface. In an embodiment, the sensor further comprises a first electrode over the first surface of the substrate, and a second electrode over the first surface of the substrate and adjacent to the first electrode. In an embodiment, the sensor further comprises a barrier layer over the first electrode and the second electrode.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: February 14, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Yaoling Pan, Patrick John Tae, Leonard Tedeschi, Jennifer Sun, Philip Allan Kraus, Xiaopu Li, Kallol Bera, Michael D. Willwerth, Albert Barrett Hicks, III, Lisa J. Enman, Mark Joseph Saly, Daniel Thomas McCormick
  • Patent number: 11557501
    Abstract: Susceptor assemblies comprising a susceptor base and a plurality of pie-shaped skins thereon are described. A pie anchor can be positioned in the center of the susceptor base to hold the pie-shaped skins in place during processing.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: January 17, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Kaushal Gangakhedkar, Kallol Bera, Joseph Yudovsky
  • Publication number: 20220333245
    Abstract: Aspects generally relate to systems, methods, and apparatus for applying a bias voltage to an ion blocker plate during substrate processing operations. In one aspect, the bias voltage is a negative direct current (DC) voltage. In one aspect, the bias voltage is a radio frequency (RF) voltage having a bias frequency of 2 MHz or less. In one implementation, a system for processing substrates includes a processing chamber. The processing chamber includes a processing volume, a pedestal positioned in the processing volume, and a lid assembly. The system includes a power line coupled to a faceplate of the lid assembly to supply a radio frequency (RF) power to the faceplate. The system includes a bias voltage line coupled to an ion blocker plate of the lid assembly to supply a bias voltage to the ion blocker plate.
    Type: Application
    Filed: April 20, 2021
    Publication date: October 20, 2022
    Inventors: Xiaopu LI, Kallol BERA, Jay D. PINSON, II, Martin Jay SEAMONS
  • Publication number: 20220244205
    Abstract: Embodiments disclosed herein include gas concentration sensors, and methods of using such gas concentration sensors. In an embodiment, a gas concentration sensor comprises a first electrode. In an embodiment the first electrode comprises first fingers. In an embodiment, the gas concentration sensor further comprises a second electrode. In an embodiment, the second electrode comprises second fingers that are interdigitated with the first fingers.
    Type: Application
    Filed: February 3, 2021
    Publication date: August 4, 2022
    Inventors: Xiaopu Li, Kallol Bera, Yaoling Pan, Kelvin Chan, Amir Bayati, Philip Allan Kraus, Kenric T. Choi, William John Durand
  • Publication number: 20220139679
    Abstract: A plasma chamber includes a chamber body having a processing region therewithin, a liner disposed on the chamber body, the liner surrounding the processing region, a substrate support disposed within the liner, a magnet assembly comprising a plurality of magnets disposed around the liner, and a magnetic-material shield disposed around the liner, the magnetic-material shield encapsulating the processing region near the substrate support.
    Type: Application
    Filed: November 3, 2020
    Publication date: May 5, 2022
    Inventors: Job George KONNOTH JOSEPH, Sathya Swaroop GANTA, Kallol BERA, Andrew NGUYEN, Jay D. PINSON, II, Akshay DHANAKSHIRUR, Kaushik Comandoor ALAYAVALLI, Canfeng LAI, Ren-Guan DUAN, Jennifer Y. SUN, Anil Kumar KALAL, Abhishek PANDEY
  • Patent number: 11315769
    Abstract: Plasma source assemblies comprising an RF hot electrode having a body and at least one return electrode spaced from the RF hot electrode to provide a gap in which a plasma can be formed. An RF feed is connected to the RF hot electrode at a distance from the inner peripheral end of the RF hot electrode that is less than or equal to about 25% of the length of the RF hot electrode.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: April 26, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kallol Bera, Anantha K. Subramani, John C. Forster, Philip A. Kraus, Farzad Houshmand, Hanhong Chen
  • Patent number: 11315763
    Abstract: Plasma source assemblies comprising an RF hot electrode having a body and at least one return electrode spaced from the RF hot electrode to provide a gap in which a plasma can be formed. An RF feed is connected to the RF hot electrode at a distance from the inner peripheral end of the RF hot electrode that is less than or equal to about 25% of the length of the RF hot electrode. The RF hot electrode can include a leg and optional triangular portion near the leg that extends at an angle to the body of the RF hot electrode. A cladding material on one or more of the RF hot electrode and the return electrode can be variably spaced or have variable properties along the length of the plasma gap.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: April 26, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kallol Bera, Dmitry A. Dzilno, Anantha K. Subramani, John C. Forster, Tsutomu Tanaka
  • Publication number: 20220122866
    Abstract: Embodiments of the present disclosure generally relate to semiconductor processing equipment, and more specifically to apparatus, e.g., magnet holding structures, that can be used with magnets during plasma processing of a substrate. In an embodiment, a magnet holding structure for a plasma-enhanced chemical vapor deposition chamber is provided. The magnet holding structure includes a top piece having a plurality of magnet retention members and a bottom piece having a plurality of magnet retention members. The top piece has a first inside edge and a first outside edge, and the bottom piece has a second inside edge and a second outside edge. The magnet holding structure further includes a plurality of casings. Each casing of the plurality of casings is configured to at least partially encapsulate a magnet, and each casing positioned between a magnet retention member of the top piece and a magnet retention member of the bottom piece.
    Type: Application
    Filed: October 21, 2020
    Publication date: April 21, 2022
    Inventors: Andrew NGUYEN, Sathya Swaroop GANTA, Kallol BERA, Canfeng LAI
  • Publication number: 20220064797
    Abstract: A lid for a process chamber includes a plate having a first surface and a second surface opposite the first surface. The first surface has a recess and a seal groove formed in the first surface and surrounding the recess. The lid further includes an array of holes extending from the recess to the second surface.
    Type: Application
    Filed: August 16, 2021
    Publication date: March 3, 2022
    Inventors: Akshay DHANAKSHIRUR, Juan Carlos ROCHA-ALVAREZ, Kaushik Comandoor ALAYAVALLI, Jay D. PINSON, II, Rick KUSTRA, Badri N. RAMAMURTHI, Anup Kumar SINGH, Ganesh BALASUBRAMANIAN, Bhaskar KUMAR, Vinayak Vishwanath HASSAN, Canfeng LAI, Kallol BERA, Sathya Swaroop GANTA
  • Publication number: 20220051910
    Abstract: Gas distribution modules comprising a housing with an upper plenum and a lower plenum are described. One of the upper plenum and lower plenum is in fluid communication with an inlet and the other is in fluid communication with an outlet. A plurality of upper passages connects the upper plenum to the bottom of the housing to allow a flow of gas to pass through and be isolated from the first plenum.
    Type: Application
    Filed: October 28, 2021
    Publication date: February 17, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Kallol Bera, Shahid Rauf, James Carducci, Vladimir Knyazik, Anantha K. Subramani
  • Publication number: 20220028710
    Abstract: Exemplary substrate processing systems may include a chamber body defining a transfer region. The systems may include a first lid plate seated on the chamber body along a first surface of the first lid plate. The first lid plate may define a plurality of apertures through the first lid plate. The systems may include a plurality of lid stacks equal to a number of apertures of the plurality of apertures defined through the first lid plate. The systems may include a plurality of isolators. An isolator of the plurality of isolators may be positioned between each lid stack of the plurality of lid stacks and a corresponding aperture of the plurality of apertures defined through the first lid plate. The systems may include a plurality of dielectric plates. A dielectric plate of the plurality of dielectric plates may be seated on each isolator of the plurality of isolators.
    Type: Application
    Filed: July 21, 2020
    Publication date: January 27, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Anantha K. Subramani, Yang Guo, Seyyed Abdolreza Fazeli, Nitin Pathak, Badri N. Ramamurthi, Kallol Bera, Xiaopu Li, Philip A. Kraus, Swaminathan T. Srinivasan
  • Patent number: 11198939
    Abstract: Apparatus and methods for processing a substrate including an injector unit insert with a plurality of flow paths leading to a first plenum, each of the flow paths providing one or more of substantially the same residence time, length and/or conductance. Injector units including the injector unit inserts have increased flow uniformity.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: December 14, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Aaron Miller, Kallol Bera