Patents by Inventor Katsura Kajihara

Katsura Kajihara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150107726
    Abstract: The present invention provides a Cu—Fe—P alloy which has a high strength, high conductivity and superior bending workability. The copper alloy comprises 0.01 to 1.0% Fe, 0.01 to 0.4% P, 0.1 to 1.0% Mg, and the remainder Cu and unavoidable impurities. The size of oxides and precipitates including Mg in the copper alloy is controlled so that the ratio of the amount of Mg measured by a specified measurement method in the extracted residue by a specified extracted residue method to the Mg content in said copper alloy is 60% or less, thus endowing the alloy with a high strength and superior bending workability.
    Type: Application
    Filed: December 29, 2014
    Publication date: April 23, 2015
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro ARUGA, Katsura Kajihara, Takeshi Kudo
  • Patent number: 8926898
    Abstract: Disclosed is a lightweight aluminum based alloy that is high in strength and elongation properties at high temperatures of around 200° C. to 300° C. and has excellent workability in hot working. Disclosed also is a heat-resistant aluminum based alloy excellent in wear resistance and rigidity. Specifically, an aluminum based alloy contains, in terms of percent by mass, 5% to 10% of Mn; 0.5% to 5% of V; 0.5% to 5% of Cr; 0.5% to 5% of Fe; 1% to 8% of Si; 0.5% to 5% of Ni, with the balance being aluminum and inevitable impurities. The aluminum based alloy has a structure including 35 to 80 percent by volume of an intermetallic compound phase with the balance being an aluminum metal matrix.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: January 6, 2015
    Assignee: Kobe Steel, Ltd.
    Inventors: Toshiaki Takagi, Katsura Kajihara, Hideo Hata
  • Publication number: 20150000796
    Abstract: This high-strength steel sheet contains, in mass %, 0.05 to 0.3% of C, 1 to 3% of Si, 0.5 to 3% of Mn, up to 0.1% (inclusive of 0%) of P, up to 0.01% (inclusive of 0%) of S, 0.001 to 0.1% of Al and 0.002 to 0.03% of N with the balance consisting of iron and unavoidable impurities, and has a microstructure which comprises, in area fraction relative to the microstructure, 40 to 85% of bainitic ferrite, 5 to 20% of retained austenite (?R), 10 to 50% (in total) of martensite and ?R, and 5 to 40% of ferrite. The retained austenite (?R) has a C concentration of 0.5 to 1.0 mass %, while the quantity of ?R present in the ferrite grains is 1% or more (in area fraction) relative to the microstructure.
    Type: Application
    Filed: February 6, 2013
    Publication date: January 1, 2015
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Elijah Kakiuchi, Toshio Murakami, Katsura Kajihara, Tatsuya Asai, Naoki Mizuta, Hideo Hata
  • Publication number: 20140305553
    Abstract: A high-strength cold-rolled steel sheet has a chemical composition including C of 0.05% to 0.30%, Si of greater than 0% to 3.0%, Mn of 0.1% to 5.0%, P of greater than 0% to 0.1%, S of greater than 0% to 0.02%, Al of 0.01% to 1.0%, and N of greater than 0% to 0.01%, in mass percent, with the remainder including iron and inevitable impurities. The steel sheet has a microstructure containing ferrite as a soft primary phase in an area percentage of 20% to 50% with the remainder including tempered martensite and/or tempered bainite as a hard secondary phase. The ferrite grains are adapted to contain cementite particles having an appropriate size in an appropriate number density.
    Type: Application
    Filed: December 11, 2012
    Publication date: October 16, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Tomokazu Masuda, Hideo Hata, Katsura Kajihara, Toshio Murakami, Masaaki Miura, Muneaki Ikeda
  • Patent number: 8715431
    Abstract: A Cu—Fe—P copper alloy sheet which has the high strength and the high electrical conductivity compatible with excellent bendability is provided. The Cu—Fe—P copper alloy sheet contains 0.01% to 3.0% of Fe and 0.01% to 0.3% of P on a percent by mass basis, wherein the orientation density of the Brass orientation is 20 or less and the sum of the orientation densities of the Brass orientation, the S orientation, and the Copper orientation is 10 or more and 50 or less in the microstructure of the copper alloy sheet.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: May 6, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Katsura Kajihara
  • Patent number: 8641837
    Abstract: A Cu—Ni—Sn—P alloy is provided, which is excellent in stress relaxation property in a direction perpendicular to a rolling direction, and has any of high strength, high conductivity, and excellent bendability. A copper alloy contains 0.1 to 3.0% of Ni, 0.1 to 3.0% of Sn, and 0.01 to 0.3% of P in mass percent respectively, and includes copper and inevitable impurities as the remainder; wherein in a radial distribution function around a Ni atom according to a XAFS analysis method, a first peak position is within a range of 2.16 to 2.35 ?, the position indicating a distance between a Ni atom in Cu and an atom nearest to the Ni atom. Thus, distances to atoms around the Ni atom in Cu are comparatively increased, so that the stress relaxation property in a direction perpendicular to the rolling direction of the copper alloy is improved.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: February 4, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Katsura Kajihara
  • Patent number: 8444777
    Abstract: An object of the present invention is to provide an Al—Zn—Mg—Cu 7000-series Al alloy having high ductility as well as having high strength. For attaining this purpose, an Al alloy having a structure in which an inclusion is not included is produced by reducing an amount of oxygen contained in an Al alloy that is obtained by solidifying a preform resulting from rapid solidification by preferably spray forming a molten metal of an Al—Zn—Mg—Cu 7000-series Al alloy with an inert gas. This Al alloy has, as mechanical properties at an ordinary temperature, a tensile strength of 600 MPa or more, and an elongation of 15% or more when the tensile strength is from 600 MPa or more and less than 800 MPa or an elongation of 10% or more when the tensile strength is 800 MPa or more, and is excellent in cold workability such as rollability.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: May 21, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Hideo Hata, Katsura Kajihara, Shigenobu Namba, Hiroyuki Takeda, Mamoru Nagao
  • Publication number: 20130045130
    Abstract: The present invention relates to a copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, one member selected from 0.005 to 0.5% of P, 0.005 to 1.0% of Cr, and 0.005 to 1.0% of Ti, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer.
    Type: Application
    Filed: June 8, 2012
    Publication date: February 21, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro ARUGA, Akira FUGONO, Takeshi KUDO, Katsura KAJIHARA
  • Patent number: 8357248
    Abstract: A copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, one member selected from 0.005 to 0.5% of P, 0.005 to 1.0% of Cr, and 0.005 to 1.0% of Ti, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer. According to the invention, it is possible to provide a copper alloy having high strength, high electrical conductivity, and excellent bendability.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: January 22, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Akira Fugono, Takeshi Kudo, Katsura Kajihara
  • Publication number: 20120288402
    Abstract: A copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, one member selected from 0.005 to 0.5% of P, 0.005 to 1.0% of Cr, and 0.005 to 1.0% of Ti, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer. According to the invention, it is possible to provide a copper alloy having high strength, high electrical conductivity, and excellent bendability.
    Type: Application
    Filed: June 8, 2012
    Publication date: November 15, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro ARUGA, Akira FUGONO, Takeshi KUDO, Katsura KAJIHARA
  • Patent number: 8268098
    Abstract: The present invention relates to a copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, one member selected from 0.005 to 0.5% of P, 0.005 to 1.0% of Cr, and 0.005 to 1.0% of Ti, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer. According to the invention, it is possible to provide a copper alloy having high strength, high electrical conductivity, and excellent bendability.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: September 18, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Akira Fugono, Takeshi Kudo, Katsura Kajihara
  • Publication number: 20120175026
    Abstract: The present invention provides a Cu—Fe—P alloy which has a high strength, high conductivity and superior bending workability. The copper alloy comprises 0.01 to 1.0% Fe, 0.01 to 0.4% P, 0.1 to 1.0% Mg, and the remainder Cu and unavoidable impurities. The size of oxides and precipitates including Mg in the copper alloy is controlled so that the ratio of the amount of Mg measured by a specified measurement method in the extracted residue by a specified extracted residue method to the Mg content in said copper alloy is 60% or less, thus endowing the alloy with a high strength and superior bending workability.
    Type: Application
    Filed: March 23, 2012
    Publication date: July 12, 2012
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Yasuhiro AGRUGA, Katsura Kajihara, Takeshi Kudo
  • Publication number: 20110182767
    Abstract: A copper alloy with an excellent stress relaxation resistance including Ni: 0.1 through 3.0 mass %, Sn: 0.01 through 3.0 mass %, P: 0.01 through 0.3 mass % and remainder copper and inevitable impurities, and the Ni content in extracted residues separated and left on a filter having filter mesh size of 0.1 ?m by using an extracted residues method accounting for 40 mass % or less of the Ni content in the copper alloy, wherein the extracted residues method requires that 10 g of the copper alloy is immersed in 300 ml of a methanol solution which contains 10 mass % of ammonium acetate, and using the copper alloy as the anode and platinum as the cathode, constant-current electrolysis is performed at the current density of 10 mA/cm2, and the solution in which the copper alloy is thus dissolved is subjected to suction filtration using a membrane filter of polycarbonate whose filter mesh size is 0.
    Type: Application
    Filed: April 1, 2011
    Publication date: July 28, 2011
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.)
    Inventors: Yasuhiro Aruga, Koya Nomura, Katsura Kajihara, Yukio Sugishita, Hiroshi Sakamoto
  • Patent number: 7824607
    Abstract: Disclosed is an aluminum alloy sheet resistant to deterioration through natural aging. The aluminum alloy sheet is an Al—Mg—Si aluminum alloy sheet containing 0.35 to 1.0 percent by mass of magnesium; 0.5 to 1.5 percent by mass of silicon; 0.01 to 1.0 percent by mass of manganese; and 0.001 to 1.0 percent by mass of copper, with the remainder being aluminum and inevitable impurities, in which the amount of dissolved silicon is 0.55 to 0.80 percent by mass, the amount of dissolved magnesium is 0.35 to 0.60 percent by mass, and the ratio of the former to the latter is 1.1 to 2. The aluminum alloy sheet may further contain 0.005 to 0.2 percent by mass of titanium with or without 0.0001 to 0.05 percent by mass of boron.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: November 2, 2010
    Assignee: Kobe Steel, Ltd.
    Inventors: Katsura Kajihara, Takeshi Kudo, Yasuhiro Aruga, Katsushi Matsumoto
  • Publication number: 20100101748
    Abstract: An object of the present invention is to provide an Al—Zn—Mg—Cu 7000-series Al alloy having high ductility as well as having high strength. For attaining this purpose, an Al alloy having a structure in which an inclusion is not included is produced by reducing an amount of oxygen contained in an Al alloy that is obtained by solidifying a preform resulting from rapid solidification by preferably spray forming a molten metal of an Al—Zn—Mg—Cu 7000-series Al alloy with an inert gas. This Al alloy has, as mechanical properties at an ordinary temperature, a tensile strength of 600 MPa or more, and an elongation of 15% or more when the tensile strength is from 600 MPa or more and less than 800 MPa or an elongation of 10% or more when the tensile strength is 800 MPa or more, and is excellent in cold workability such as rollability.
    Type: Application
    Filed: February 20, 2008
    Publication date: April 29, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hideo Hata, Katsura Kajihara, Shigenobu Namba, Hiroyuki Takeda, Mamoru Nagao
  • Publication number: 20090116996
    Abstract: A copper alloy with an excellent stress relaxation resistance including Ni: 0.1 through 3.0 mass %, Sn: 0.01 through 3.0 mass %, P: 0.01 through 0.3 mass % and remainder copper and inevitable impurities, and the Ni content in extracted residues separated and left on a filter having filter mesh size of 0.1 ?m by using an extracted residues method accounting for 40 mass % or less of the Ni content in the copper alloy, wherein the extracted residues method requires that 10 g of the copper alloy is immersed in 300 ml of a methanol solution which contains 10 mass % of ammonium acetate, and using the copper alloy as the anode and platinum as the cathode, constant-current electrolysis is performed at the current density of 10 mA/cm2, and the solution in which the copper alloy is thus dissolved is subjected to suction filtration using a membrane filter of polycarbonate whose filter mesh size is 0.
    Type: Application
    Filed: June 8, 2006
    Publication date: May 7, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.)
    Inventors: Yasuhiro Aruga, Koya Nomura, Katsura Kajihara, Yukio Sugishita, Hiroshi Sakamoto
  • Publication number: 20090101243
    Abstract: The present invention relates to a copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, one member selected from 0.005 to 0.5% of P, 0.005 to 1.0% of Cr, and 0.005 to 1.0% of Ti, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer. According to the invention, it is possible to provide a copper alloy having high strength, high electrical conductivity, and excellent bendability.
    Type: Application
    Filed: May 23, 2007
    Publication date: April 23, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro Aruga, Akira Fugono, Takeshi Kudo, Katsura Kajihara
  • Publication number: 20090084473
    Abstract: The present invention provides a Cu—Fe—P alloy which has a high strength, high conductivity and superior bending workability. The copper alloy comprises 0.01 to 1.0% Fe, 0.01 to 0.4% P, 0.1 to 1.0% Mg, and the remainder Cu and unavoidable impurities. The size of oxides and precipitates including Mg in the copper alloy is controlled so that the ratio of the amount of Mg measured by a specified measurement method in the extracted residue by a specified extracted residue method to the Mg content in said copper alloy is 60% or less, thus endowing the alloy with a high strength and superior bending workability.
    Type: Application
    Filed: June 19, 2006
    Publication date: April 2, 2009
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL LTD)
    Inventors: Yasuhiro Aruga, Katsura Kajihara, Takeshi Kudo
  • Publication number: 20090053099
    Abstract: An aluminum alloy sheet for bottle cans superior in high-temperature properties and capable of preventing thermal deformation thereof in coating and heat treatment and securing can strength after the heat treatment. The aluminum alloy sheet has the following composition: Mn 0.7-1.5%, Mg 0.8-1.7%, Fe 0.1-0.7%, Si 0.05-0.5%, Cu 0.1-0.6%, with the remainder being Al and inevitable impurities, and has a crystal structure elongated in a rolling direction and with an aspect ratio of crystal grains of 3 or more as determined through an examination from above of a part located at the center in the through-thickness direction. In the sheet, the amount of solute Cu is 0.05-0.3%, which means the amount of Cu in a solution separated from a precipitate exceeding 0.2 m in particle size by the extracted residue method using hot phenol, and the amount of solute Mg is 0.75-1.6%, which means the amount of solute Mg separated from a precipitate exceeding 0.2 m in particle size by the extracted residue method using hot phenol.
    Type: Application
    Filed: March 7, 2006
    Publication date: February 26, 2009
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD)
    Inventors: Katsura Kajihara, Kiyohito Tsuruda, Yasuhiro Aruga
  • Publication number: 20090041616
    Abstract: Disclosed is a lightweight aluminum based alloy that is high in strength and elongation properties at high temperatures of around 200° C. to 300° C. and has excellent workability in hot working. Disclosed also is a heat-resistant aluminum based alloy excellent in wear resistance and rigidity. Specifically, an aluminum based alloy contains, in terms of percent by mass, 5% to 10% of Mn; 0.5% to 5% of V; 0.5% to 5% of Cr; 0.5% to 5% of Fe; 1% to 8% of Si; 0.5% to 5% of Ni, with the balance being aluminum and inevitable impurities. The aluminum based alloy has a structure including 35 to 80 percent by volume of an intermetallic compound phase with the balance being an aluminum metal matrix.
    Type: Application
    Filed: March 7, 2006
    Publication date: February 12, 2009
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Toshiaki Takagi, Katsura Kajihara, Hideo Hata