Patents by Inventor Katsura Kajihara

Katsura Kajihara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090010797
    Abstract: A Cu—Fe—P copper alloy sheet which has the high strength and the high electrical conductivity compatible with excellent bendability is provided. The Cu—Fe—P copper alloy sheet contains 0.01% to 3.0% of Fe and 0.01% to 0.3% of P on a percent by mass basis wherein the orientation density of the Brass orientation is 20 or less and the sum of the orientation densities of the Brass orientation, the S orientation, and the Copper orientation is 10 or more and 50 or less in the microstructure of the copper alloy sheet.
    Type: Application
    Filed: August 11, 2005
    Publication date: January 8, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro Aruga, Katsura Kajihara
  • Publication number: 20080302454
    Abstract: A cold-rolled aluminum alloy sheet has a composition containing 0.7 to 1.5% by mass Mn, 0.8 to 1.7% by mass Mg, 0.1 to 0.7% by mass Fe, 0.05 to 0.5% by mass Si, 0.1 to 0.6% by mass Cu, and Al and inevitable impurities as other elements. In the structure of the cold-rolled aluminum alloy sheet, 50 to 400 particles of particle sizes in the range of 0.05 to 1 ?m are dispersed in an area of 300 ?m2 when observed under a TEM at a magnification in the range of 5,000× to 15,000× magnification, and the ratio of the number of the dispersed particles of sizes of 0.3 ?m or above to the number of all the dispersed particles is in the range of 15 to 70%.
    Type: Application
    Filed: September 14, 2006
    Publication date: December 11, 2008
    Applicant: Kabushiki Kaisha Kobe Seiko Sho ( Kobe Steel, Ltd.)
    Inventors: Katsura Kajihara, Kiyohito Tsuruda
  • Publication number: 20080175747
    Abstract: Disclosed is an aluminum alloy sheet resistant to deterioration through natural aging. The aluminum alloy sheet is an Al—Mg—Si aluminum alloy sheet containing 0.35 to 1.0 percent by mass of magnesium; 0.5 to 1.5 percent by mass of silicon; 0.01 to 1.0 percent by mass of manganese; and 0.001 to 1.0 percent by mass of copper, with the remainder being aluminum and inevitable impurities, in which the amount of dissolved silicon is 0.55 to 0.80 percent by mass, the amount of dissolved magnesium is 0.35 to 0.60 percent by mass, and the ratio of the former to the latter is 1.1 to 2. The aluminum alloy sheet may further contain 0.005 to 0.2 percent by mass of titanium with or without 0.0001 to 0.05 percent by mass of boron.
    Type: Application
    Filed: December 17, 2007
    Publication date: July 24, 2008
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd)
    Inventors: Katsura Kajihara, Takeshi Kudo, Yasuhiro Aruga, Katsushi Matsumoto
  • Publication number: 20080025867
    Abstract: Disclosed is a Cu—Fe—P alloy capable of enabling high strength, high electrical conductivity, and excellent softening resistance to coexist. The Cu—Fe—P alloy is suitable for use as a constituent material of a lead frame for a semiconductor device. With the Cu—Fe—P alloy with strength rendered higher by micronizing Fe-containing compounds, when enhancing softening resistance by increasing Sn content so as to exceed 0.5 mass %, at least one element selected from the group consisting of Ni, Mg, Ca, Al, Si, and Cr, in trace amounts, are caused to be additionally contained to thereby check cracking likely to occur at the time of forging and hot rolling in a process of producing the copper alloy, as a result of an increase in the Sn content.
    Type: Application
    Filed: May 31, 2007
    Publication date: January 31, 2008
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro ARUGA, Ryoichi Ozaki, Katsura Kajihara
  • Publication number: 20070148032
    Abstract: A Cu—Ni—Sn—P alloy is provided, which is excellent in stress relaxation property in a direction perpendicular to a rolling direction, and has any of high strength, high conductivity, and excellent bendability. A copper alloy contains 0.1 to 3.0% of Ni, 0.1 to 3.0% of Sn, and 0.01 to 0.3% of P in mass percent respectively, and includes copper and inevitable impurities as the remainder; wherein in a radial distribution function around a Ni atom according to a XAFS analysis method, a first peak position is within a range of 2.16 to 2.35 ?, the position indicating a distance between a Ni atom in Cu and an atom nearest to the Ni atom. Thus, distances to atoms around the Ni atom in Cu are comparatively increased, so that the stress relaxation property in a direction perpendicular to the rolling direction of the copper alloy is improved.
    Type: Application
    Filed: September 1, 2006
    Publication date: June 28, 2007
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro Aruga, Katsura Kajihara
  • Patent number: 7125515
    Abstract: A aluminum base alloy containing boron and manufacturing method thereof, said alloy exhibiting good mechanical properties (such as high-temperature strength and creep strength) over a long period of time and also having a neutron absorbing capacity owing to boron present therein in the form of a compound without segregation. The alloy contains 0.5–10 mass % of boron with an isotopic element satisfying a relation of 10B/(10B +11B)?30%. said boron being present in the form of a boron compound which is 300 ?m or below in size. The alloy is obtained by melting at a temperature in excess of 950° C. and cast at a temperature in the range of 800° C. to 950° C., in such a way that the molten metal is kept for 60–180° seconds until it cools from 950° C. to the casting temperature.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: October 24, 2006
    Assignee: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro Aruga, Katsura Kajihara, Yasuaki Sugizaki
  • Publication number: 20060137783
    Abstract: A aluminum base alloy containing boron and manufacturing method thereof, said alloy exhibiting good mechanical properties (such as high-temperature strength and creep strength) over a long period of time and also having a neutron absorbing capacity owing to boron present therein in the form of a compound without segregation. The alloy contains 0.5-10 mass % of boron with an isotopic element satisfying a relation of 10B/(10B+11B)?30%, said boron being present in the form of a boron compound which is 300 ?m or below in size. The alloy is obtained by melting at a temperature in excess of 950° C. and cast at a temperature in the range of 800° C. to 950° C., in such a way that the molten metal is kept for 60-1800 seconds until it cools from 950° C. to the casting temperature.
    Type: Application
    Filed: April 15, 2003
    Publication date: June 29, 2006
    Applicant: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Yasuhiro Aruga, Katsura Kajihara, Yasuaki Sugizaki
  • Publication number: 20050161126
    Abstract: Disclosed is a copper alloy containing Fe of 0.01 to 0.5% and P of 0.01 to 0.3% in mass with the balance consisting of copper and unavoidable impurities, wherein the mass content ratio of Fe to P, namely Fe/P, is in the range from 0.5 to 6.0 and the volume fraction and the number of dispersoids of 1 to 20 nm in average particle diameter in the microstructure of the copper alloy are 1.0% or more and 300 pieces/?m2 or more, respectively. The Cu—Fe—P alloy can secure a high strength and a high conductivity simultaneously.
    Type: Application
    Filed: December 28, 2004
    Publication date: July 28, 2005
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro Aruga, Katsura Kajihara
  • Publication number: 20050092404
    Abstract: A softening-resistant copper alloy contains Fe in an Fe content in the range of 0.01 to 4.0% by mass. The copper alloy has a cube orientation density of 50% or below and a mean grain size of 30 ?m or below after being annealed at 500° C. for 1 min. A copper alloy sheet forming method of forming a copper alloy sheet comprises, in successive steps: a hot rolling process for hot-rolling a copper alloy sheet of the copper alloy according to any one of claims 1 to 4, at least two working cycles each of a cold rolling process and an annealing process, and a finish cold rolling process. Reduction ratio for each of the cold rolling processes of the working cycles is in the range of 50 to 80%, and reduction ratio for the finish cold rolling process is in the range of 30 to 85%.
    Type: Application
    Filed: November 1, 2004
    Publication date: May 5, 2005
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro Aruga, Katsura Kajihara
  • Patent number: 5925313
    Abstract: There is provided an Al base alloy containing boron which is superior in mechanical properties such as strength, ductility or workability and the like and has a neutron absorbing capacity and an ability to recycle. This is an Al base alloy containing boron with Mg: 2 to 8% (massed %, similarly applied hereinafter) and B: 0.5 to 1.5% and satisfying a relation of .sup.10 B/(.sup.10 B+.sup.11 B).gtoreq.95%, and a rate of AlB.sub.2 in all boron compounds is 80% or more by a volumetric rate.
    Type: Grant
    Filed: April 22, 1996
    Date of Patent: July 20, 1999
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Katsura Kajihara, Haruo Kakunai, Yuichi Seki, Tadahiko Yamashita, Masahiro Yanagawa