Patents by Inventor Kazuo Nojiri

Kazuo Nojiri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6555464
    Abstract: Insulating films 34 through 38 (of which insulating films 34, 36, 38 are silicon nitride films and insulating films 35, 38 are silicon oxide films) are sequentially formed on the wires 33 of the fourth wiring layer and groove pattern 40 is transferred into the insulating film 38 by means of photolithography. An anti-reflection film 41 is formed to fill the grooves 40 of the insulating film 38 and then a resist film 42 carrying a hole pattern 43 is formed. The films are subjected to an etching operation in the presence of the resist film 42 to transfer the hole pattern into the insulating films 38, 37, 36 and part of the insulating film 35. Subsequently, the resist film 42 and the anti-reflection film 41 are removed and the groove pattern 40 and the hole pattern 43 are transferred respectively into the insulating film 37 and the insulating film 35 by using the insulating film 38 as mask.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: April 29, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Shinichi Fukada, Kazuo Nojiri, Takashi Yunogami, Shoji Hotta, Hideo Aoki, Takayuki Oshima, Nobuyoshi Kobayashi
  • Patent number: 6537415
    Abstract: Disclosed is apparatus for treating samples, and a method of using the apparatus. The apparatus includes processing apparatus (a) for treating the samples (e.g., plasma etching apparatus), (b) for removing residual corrosive compounds formed by the sample treatment, (c) for wet-processing of the samples and (d) for dry-processing the samples. A plurality of wet-processing treatments of a sample can be performed. The wet-processing apparatus can include a plurality of wet-processing stations. The samples can either be passed in series through the plurality of wet-processing stations, or can be passed in parallel through the wet-processing stations.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: March 25, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Masayuki Kojima, Yoshimi Torii, Michimasa Hunabashi, Kazuyuki Suko, Takashi Yamada, Keizo Kuroiwa, Kazuo Nojiri, Yoshinao Kawasaki, Yoshiaki Sato, Ryooji Fukuyama, Hironobu Kawahara
  • Patent number: 6537417
    Abstract: Disclosed is apparatus for treating samples, and a method of using the apparatus. The apparatus includes processing apparatus (a) for treating the samples (e.g., plasma etching apparatus), (b) for removing residual corrosive compounds formed by the sample treatment, (c) for wet-processing of the samples and (d) for dry-processing the samples. A plurality of wet-processing treatments of a sample can be performed. The wet-processing apparatus can include a plurality of wet-processing stations. The samples can either be passed in series through the plurality of wet-processing stations, or can be passed in parallel through the wet-processing stations.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: March 25, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Masayuki Kojima, Yoshimi Torii, Michimasa Hunabashi, Kazuyuki Suko, Takashi Yamada, Keizo Kuroiwa, Kazuo Nojiri, Yoshinao Kawasaki, Yoshiaki Sato, Ryooji Fukuyama, Hironobu Kawahara
  • Publication number: 20030041881
    Abstract: The invention provides a water supplying apparatus and method thereof which has a high capacity of peeling and removing a disused material such as a resist film and the like, and can efficiently use water vapor. A water supplying apparatus for executing a washing process, a cleaning process and a working process of a subject, is provided with a water vapor body supplying means for supplying a water vapor body, and a water mist body supplying means for supplying a water mist body containing liquid water fine particles, and the structure is made such that said water vapor body and said water mist body are supplied to the subject by independently controlling said two means.
    Type: Application
    Filed: August 27, 2002
    Publication date: March 6, 2003
    Inventors: Yoichi Isago, Kazuo Nojiri, Naoaki Kobayashi, Teruo Saito, Shu Nakajima
  • Patent number: 6528400
    Abstract: Insulating films 34 through 38 (of which insulating films 34, 36, 38 are silicon nitride films and insulating films 35, 38 are silicon oxide films) are sequentially formed on the wires 33 of the fourth wiring layer and groove pattern 40 is transferred into the insulating film 38 by means of photolithography. An anti-reflection film 41 is formed to fill the grooves 40 of the insulating film 38 and then a resist film 42 carrying a hole pattern 43 is formed. The films are subjected to an etching operation in the presence of the resist film 42 to transfer the hole pattern into the insulating films 38, 37, 36 and part of the insulating film 35. Subsequently, the resist film 42 and the anti-reflection film 41 are removed and the groove pattern 40 and the hole pattern 43 are transferred respectively into the insulating film 37 and the insulating film 35 by using the insulating film 38 as mask.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: March 4, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Shinichi Fukada, Kazuo Nojiri, Takashi Yunogami, Shoji Hotta, Hideo Aoki, Takayuki Oshima, Nobuyoshi Kobayashi
  • Patent number: 6451665
    Abstract: Described is a manufacturing method of an integrated circuit which uses a thin film such as platinum or BST as a hard mask upon patterning ruthenium or the like, thereby making it possible to form a device without removing the hard mask. In addition, the invention method makes it possible to interpose a protecting film such as platinum in order to prevent, upon removing a resist used for the patterning of the hard mask, an underlying ruthenium film or the like from being damaged.
    Type: Grant
    Filed: December 13, 1999
    Date of Patent: September 17, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Yunogami, Kazuo Nojiri, Yuzuru Ohji, Sukeyoshi Tsunekawa, Masahiko Hiratani, Yuichi Matsui
  • Publication number: 20020127848
    Abstract: Insulating films 34 through 38 (of which insulating films 34, 36, 38 are silicon nitride films and insulating films 35, 38 are silicon oxide films) are sequentially formed on the wires 33 of the fourth wiring layer and groove pattern 40 is transferred into the insulating film 38 by means of photolithography. An anti-reflection film 41 is formed to fill the grooves 40 of the insulating film 38 and then a resist film 42 carrying a hole pattern 43 is formed. The films are subjected to an etching operation in the presence of the resist film 42 to transfer the hole pattern into the insulating films 38, 37, 36 and part of the insulating film 35. Subsequently, the resist film 42 and the anti-reflection film 41 are removed and the groove pattern 40 and the hole pattern 43 are transferred respectively into the insulating film 37 and the insulating film 35 by using the insulating film 38 as mask.
    Type: Application
    Filed: January 17, 2002
    Publication date: September 12, 2002
    Inventors: Shinichi Fukada, Kazuo Nojiri, Takashi Yunogami, Shoji Hotta, Hideo Aoki, Takayuki Oshima, Nobuyoshi Kobayashi
  • Patent number: 6432835
    Abstract: Fine etching of ruthenium or ruthenium oxide is suited for a ferroelectric and high dielectric film such as BST. Over a silicon oxide film 46 and a plug 49, a titanium nitride film 50, ruthenium film 51, ruthenium dioxide film 52 and silicon oxide film 53 are stacked successively. After patterning the silicon oxide film 53 with a resist film, the resist film is removed. In the presence of the patterned silicon oxide film 53, the ruthenium dioxide film 52 and ruthenium film 51 are etched under processing pressure of 15 mTorr, plasma source power of 500 W, RF bias power of 200 W, oxygen flow of 715 sccm, chlorine flow of 80 sccm, total flow of about 800 sccm, gas residence time of 49.3 msec, and over etching of 100%.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: August 13, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Yunogami, Kazuo Nojiri
  • Publication number: 20020076921
    Abstract: Insulating films 34 through 38 (of which insulating films 34, 36, 38 are silicon nitride films and insulating films 35, 38 are silicon oxide films) are sequentially formed on the wires 33 of the fourth wiring layer and groove pattern 40 is transferred into the insulating film 38 by means of photolithography. An anti-reflection film 41 is formed to fill the grooves 40 of the insulating film 38 and then a resist film 42 carrying a hole pattern 43 is formed. The films are subjected to an etching operation in the presence of the resist film 42 to transfer the hole pattern into the insulating films 38, 37, 36 and part of the insulating film 35. Subsequently, the resist film 42 and the anti-reflection film 41 are removed and the groove pattern 40 and the hole pattern 43 are transferred respectively into the insulating film 37 and the insulating film 35 by using the insulating film 38 as mask.
    Type: Application
    Filed: December 3, 2001
    Publication date: June 20, 2002
    Inventors: Shinichi Fukada, Kazuo Nojiri, Takashi Yunogami, Shoji Hotta, Hideo Aoki, Takayuki Oshima, Nobuyoshi Kobayashi
  • Publication number: 20020043340
    Abstract: Disclosed is apparatus for treating samples, and a method of using the apparatus. The apparatus includes processing apparatus (a) for treating the samples (e.g., plasma etching apparatus), (b) for removing residual corrosive compounds formed by the sample treatment, (c) for wet-processing of the samples and (d) for dry-processing the samples. A plurality of wet-processing treatments of a sample can be performed. The wet-processing apparatus can include a plurality of wet-processing stations. The samples can either be passed in series through the plurality of wet-processing stations, or can be passed in parallel through the wet-processing stations.
    Type: Application
    Filed: May 3, 2001
    Publication date: April 18, 2002
    Inventors: Masayuki Kojima, Yoshimi Torii, Michimasa Hunabashi, Kazuyuki Suko, Takashi Yamada, Keizo Kuroiwa, Kazuo Nojiri, Yoshinao Kawasaki, Yoshiaki Sato, Ryooji Fukuyama, Hironobu Kawahara
  • Publication number: 20020043339
    Abstract: Disclosed is apparatus for treating samples, and a method of using the apparatus. The apparatus includes processing apparatus (a) for treating the samples (e.g., plasma etching apparatus), (b) for removing residual corrosive compounds formed by the sample treatment, (c) for wet-processing of the samples and (d) for dry-processing the samples. A plurality of wet-processing treatments of a sample can be performed. The wet-processing apparatus can include a plurality of wet-processing stations. The samples can either be passed in series through the plurality of wet-processing stations, or can be passed in parallel through the wet-processing stations.
    Type: Application
    Filed: August 31, 2001
    Publication date: April 18, 2002
    Inventors: Masayuki Kojima, Yoshimi Torii, Michimasa Hunabashi, Kazuyuki Suko, Takashi Yamada, Keizo Kuroiwa, Kazuo Nojiri, Yoshinao Kawasaki, Yoshiaki Sato, Ryooji Fukuyama, Hironobu Kawahara
  • Publication number: 20020023720
    Abstract: Disclosed is apparatus for treating samples, and a method of using the apparatus. The apparatus includes processing apparatus (a) for treating the samples (e.g., plasma etching apparatus), (b) for removing residual corrosive compounds formed by the sample treatment, (c) for wet-processing of the samples and (d) for dry-processing the samples. A plurality of wet-processing treatments of a sample can be performed. The wet-processing apparatus can include a plurality of wet-processing stations. The samples can either be passed in series through the plurality of wet-processing stations, or can be passed in parallel through the wet-processing stations.
    Type: Application
    Filed: November 2, 2001
    Publication date: February 28, 2002
    Inventors: Masayuki Kojima, Yoshimi Torii, Michimasa Hunabashi, Kazuyuki Suko, Takashi Yamada, Keizo Kuroiwa, Kazuo Nojiri, Yoshinao Kawasaki, Yoshiaki Sato, Ryooji Fukuyama, Hironobu Kawahara
  • Publication number: 20020013063
    Abstract: Disclosed is apparatus for treating samples, and a method of using the apparatus. The apparatus includes processing apparatus (a) for treating the samples (e.g., plasma etching apparatus), (b) for removing residual corrosive compounds formed by the sample treatment, (c) for wet-processing of the samples and (d) for dry-processing the samples. A plurality of wet-processing treatments of a sample can be performed. The wet-processing apparatus can include a plurality of wet-processing stations. The samples can either be passed in series through the plurality of wet-processing stations, or can be passed in parallel through the wet-processing stations.
    Type: Application
    Filed: July 31, 2001
    Publication date: January 31, 2002
    Inventors: Masayuki Kojima, Yoshimi Torii, Michimasa Hunabashi, Kazuyuki Suko, Takashi Yamada, Keizo Kuroiwa, Kazuo Nojiri, Yoshinao Kawasaki, Yoshiaki Sato, Ryooji Fukuyama, Hironobu Kawahara
  • Patent number: 6340632
    Abstract: Insulating films 34 through 38 (of which insulating films 34, 36, 38 are silicon nitride films and insulating films 35, 38 are silicon oxide films) are sequentially formed on the wires 33 of the fourth wiring layer and groove pattern 40 is transferred into the insulating film 38 by means of photolithography. An anti-reflection film 41 is formed to fill the grooves 40 of the insulating film 38 and then a resist film 42 carrying a hole pattern 43 is formed. The films are subjected to an etching operation in the presence of the resist film 42 to transfer the hole pattern into the insulating films 38, 37, 36 and part of the insulating film 35. Subsequently, the resist film 42 and the anti-reflection film 41 are removed and the groove pattern 40 and the hole pattern 43 are transferred respectively into the insulating film 37 and the insulating film 35 by using the insulating film 38 as mask.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: January 22, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Shinichi Fukada, Kazuo Nojiri, Takashi Yunogami, Shoji Hotta, Hideo Aoki, Takayuki Oshima, Nobuyoshi Kobayashi
  • Patent number: 6326218
    Abstract: Described is a manufacturing method of an integrated circuit which uses a thin film such as platinum or BST as a hard mask upon patterning ruthenium or the like, thereby making it possible to form a device without removing the hard mask. In addition, the invention method makes it possible to interpose a protecting film such as platinum in order to prevent, upon removing a resist used for the patterning of the hard mask, an underlying ruthenium film or the like from being damaged.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: December 4, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Yunogami, Kazuo Nojiri, Yuzuru Ohji, Sukeyoshi Tsunekawa, Masahiko Hiratani, Yuichi Matsui
  • Publication number: 20010006245
    Abstract: With a view to providing a technique for highly-selective etching of Ru (ruthenium) with a photoresist as an etching mask, an Ru film, which is an lower electrode material deposited on the side walls and bottom surface of a hole, is covered with a photoresist film, followed by isotropic dry etching in a gas atmosphere containing an ozone gas, whereby a portion of the Ru film outside of the hole is removed.
    Type: Application
    Filed: December 28, 2000
    Publication date: July 5, 2001
    Inventors: Takashi Yunogami, Yoshitaka Nakamura, Kazuo Nojiri, Sukeyoshi Tsunekawa, Toshiyuki Arai, Miwako Nakahara, Shigeru Ohno, Tomonori Saeki, Masaru Izawa
  • Patent number: 6254721
    Abstract: Disclosed is apparatus for treating samples, and a method of using the apparatus. The apparatus includes processing apparatus (a) for treating the samples (e.g., plasma etching apparatus), (b) for removing residual corrosive compounds formed by the sample treatment, (c) for wet-processing of the samples and (d) for dry-processing the samples. A plurality of wet-processing treatments of a sample can be performed. The wet-processing apparatus can include a plurality of wet-processing stations. The samples can either be passed in series through the plurality of wet-processing stations, or can be passed in parallel through the wet-processing stations.
    Type: Grant
    Filed: February 15, 2000
    Date of Patent: July 3, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Masayuki Kojima, Yoshimi Torii, Michimasa Hunabashi, Kazuyuki Suko, Takashi Yamada, Keizo Kuroiwa, Kazuo Nojiri, Yoshinao Kawasaki, Yoshiaki Sato, Ryooji Fukuyama, Hironobu Kawahara
  • Patent number: 6191045
    Abstract: In order to provide a method of treating a multilayer including metal and polysilicon for use in a conductor or a gate electrode of a semiconductor device with high accuracy at a high selectivity, the temperature of a sample is maintained at 100° C. or higher at the time of etching a metal film to increase the etch rate of the metal film. In order to suppress the etch rate of a polysilicon film and prevent side etching, an oxygen gas is added to a gas containing a halogen element. In order to suppress the etch rate of a silicon oxide film at the time of etching the polysilicon film, the etching is performed with etch parameters which are divided into those for the metal film and those for the polysilicon film. In the etching performed to the multilayer containing metal and polysilicon, by etching the metal film at a high temperature of 100° C. or higher, the etch rate of the metal film becomes high. Consequently, there is no partial etch residue of the metal film and a barrier film.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: February 20, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Motohiko Yoshigai, Hiroshi Hasegawa, Hiroshi Akiyama, Takafumi Tokunaga, Tadashi Umezawa, Masayuki Kojima, Kazuo Nojiri, Hiroshi Kawakami, Kunihiko Katou
  • Patent number: 6186153
    Abstract: Providing a dry cleaning method capable of removing deposition films which adhere to the inner walls of a semiconductor manufacturing apparatus-that is, removing dust production sources therefrom. To this end, the dry cleaning process is supplemented by a step of removing either ion sputtered matter or products of the internal member materials of the apparatus or chemical compounds of such apparatus internal member materials and of an etching gas, in addition to a step of removing etching reaction products. It thus becomes possible to eliminate dust generation due to pealing off of deposition films with an increase in the number of wafers being processed, which in turn increases the manufacturing yield and working efficiency of the manufacturing apparatus.
    Type: Grant
    Filed: March 18, 1998
    Date of Patent: February 13, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Kitsunai, Nobuo Tsumaki, Shigeru Kakuta, Kazuo Nojiri, Kazue Takahashi
  • Patent number: 6077788
    Abstract: Disclosed is apparatus for treating samples, and a method of using the apparatus. The apparatus includes processing apparatus (a) for treating the samples (e.g., plasma etching apparatus, the samples being selectively etched through use of a resist mask), (b) for removing (ashing) the resist mask, (c) for wet-processing of the samples and (d) for dry-processing the samples. Samples are passed sequentially from a supply cassette (containing a plurality of samples) to the plasma etching apparatus, through the other apparatus and to a discharge cassette (which can hold a plurality of the samples). At least two of the samples can be processed simultaneously in a path from (and including), the plasma etching apparatus to (and including) the wet-processing structure.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: June 20, 2000
    Assignee: Hitachi, Ltd.
    Inventors: Yoshinao Kawasaki, Hironobu Kawahara, Yoshiaki Sato, Ryooji Fukuyama, Kazuo Nojiri, Yoshimi Torii