Patents by Inventor Keiji Ishibashi

Keiji Ishibashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120223417
    Abstract: A group III nitride crystal substrate is provided wherein, a uniform distortion at a surface layer of the crystal substrate is equal to or lower than 1.9×10?3, and wherein the main surface has a plane orientation inclined in a <11-20> direction at an angle equal to or greater than 10° and equal to or smaller than 81° with respect to one of (0001) and (000-1) planes of the crystal substrate. A group III nitride crystal substrate suitable for manufacturing a light emitting device with a blue shift of an emission suppressed, an epilayer-containing group III nitride crystal substrate, a semiconductor device and a method of manufacturing the same can thereby be provided.
    Type: Application
    Filed: May 11, 2012
    Publication date: September 6, 2012
    Inventors: Keiji Ishibashi, Yusuke Yoshizumi
  • Patent number: 8242498
    Abstract: A compound semiconductor substrate 10 according to the present invention is comprised of a Group III nitride and has a surface layer 12 containing a chloride of not less than 200×1010 atoms/cm2 and not more than 12000×1010 atoms/cm2 in terms of Cl and an oxide of not less than 3.0 at % and not more than 15.0 at % in terms of O, at a surface. The inventors conducted elaborate research and newly discovered that when the surface layer 12 at the surface of the compound semiconductor substrate 10 contained the chloride of not less than 200×1010 atoms/cm2 and not more than 12000×1010 atoms/cm2 in terms of Cl and the oxide of not less than 3.0 at % and not more than 15.0 at % in terms of O, Si was reduced at an interface between the compound semiconductor substrate 10 and an epitaxial layer 14 formed thereon and, as a result, the electric resistance at the interface was reduced.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: August 14, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Ishibashi, Fumitake Nakanishi
  • Patent number: 8228963
    Abstract: A gallium nitride-based semiconductor optical device is provided that includes an indium-containing gallium nitride-based semiconductor layer that exhibit low piezoelectric effect and high crystal quality. The gallium nitride-based semiconductor optical device 11a includes a GaN support base 13, a GaN-based semiconductor region 15, and well layers 19. A primary surface 13a tilts from a surface orthogonal to a reference axis that extends in a direction from one crystal axis of the m-axis and the a-axis of GaN toward the other crystal axis. The tilt angle AOFF is 0.05 degree or more to less than 15 degrees. The angle AOFF is equal to the angle defined by a vector VM and a vector VN. The inclination of the primary surface is shown by a typical m-plane SM and m-axis vector VM. The GaN-based semiconductor region 15 is provided on the primary surface 13a. In the well layers 19 in an active layer 17, both the m-plane and the a-plane of the well layers 19 tilt from a normal axis AN of the primary surface 13a.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: July 24, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yohei Enya, Yusuke Yoshizumi, Hideki Osada, Keiji Ishibashi, Katsushi Akita, Masaki Ueno
  • Publication number: 20120184108
    Abstract: A nitride semiconductor wafer is planar-processed by grinding a bottom surface of the wafer, etching the bottom surface by, e.g., KOH for removing a bottom process-induced degradation layer, chamfering by a rubber whetstone bonded with 100 wt %-60 wt % #3000-#600 diamond granules and 0 wt %-40 wt % oxide granules, grinding and polishing a top surface of the wafer, etching the top surface for eliminating a top process-induced degradation layer and maintaining a 0.5 ?m-10 ?m thick edge process-induced degradation layer.
    Type: Application
    Filed: April 2, 2012
    Publication date: July 19, 2012
    Inventors: Keiji Ishibashi, Hidenori Mikami, Naoki Matsumoto
  • Publication number: 20120164833
    Abstract: Afforded are a polishing agent, and a compound semiconductor manufacturing method and semiconductor device manufacturing method utilizing the agent, whereby the surface quality of compound semiconductor substrates can be favorably maintained, and high polishing rates can be sustained as well. The polishing agent is a polishing agent for Ga?In(1-?)As?P(1-?) (0???1; 0???1) compound semiconductors, and includes an alkali metal carbonate, an alkali metal organic salt, a chlorine-based oxidizer, and an alkali metal phosphate, wherein the sum of the concentrations of the alkali metal carbonate and the alkali metal organic salt is between 0.01 mol/L and 0.02 mol/L, inclusive. The compound semiconductor manufacturing method comprises a step of preparing a Ga?In(1-?)As?P(1-?) (0???1; 0???1) compound semiconductor, and a step of polishing the face of the compound semiconductor utilizing an aforedescribed polishing agent.
    Type: Application
    Filed: March 9, 2012
    Publication date: June 28, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Keiji Ishibashi, Masashi Futamura, Takayuki Nishiura
  • Patent number: 8192543
    Abstract: A nitride crystal is characterized in that, in connection with plane spacing of arbitrary specific parallel crystal lattice planes of the nitride crystal obtained from X-ray diffraction measurement performed with variation of X-ray penetration depth from a surface of the crystal while X-ray diffraction conditions of the specific parallel crystal lattice planes are satisfied, a uniform distortion at a surface layer of the crystal represented by a value of |d1?d2|/d2 obtained from the plane spacing d1 at the X-ray penetration depth of 0.3 ?m and the plane spacing d2 at the X-ray penetration depth of 5 ?m is equal to or lower than 2.1×10?3.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: June 5, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Ishibashi, Tokiko Kaji, Seiji Nakahata, Takayuki Nishiura
  • Patent number: 8183669
    Abstract: A nitride semiconductor wafer is planar-processed by grinding a bottom surface of the wafer, etching the bottom surface by, e.g., KOH for removing a bottom process-induced degradation layer, chamfering by a rubber whetstone bonded with 100 wt %-60 wt % #3000-#600 diamond granules and 0 wt %-40 wt % oxide granules, grinding and polishing a top surface of the wafer, etching the top surface for eliminating a top process-induced degradation layer and maintaining a 0.5 ?m-10 ?m thick edge process-induced degradation layer.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: May 22, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Ishibashi, Hidenori Mikami, Naoki Matsumoto
  • Publication number: 20120104558
    Abstract: In a semiconductor device 100, it is possible to prevent C from piling up at a boundary face between an epitaxial layer 22 and a group III nitride semiconductor substrate 10 by the presence of 30×1010 pieces/cm2 to 2000×1010 pieces/cm2 of sulfide in terms of S and 2 at % to 20 at % of oxide in terms of O in a surface layer 12. By thus preventing C from piling up, a high-resistivity layer is prevented from being formed on the boundary face between the epitaxial layer 22 and the group III nitride semiconductor substrate 10. Accordingly, it is possible to reduce electrical resistance at the boundary face between the epitaxial layer 22 and the group III nitride semiconductor substrate 10, and improve the crystal quality of the epitaxial layer 22. Consequently, it is possible to improve the emission intensity and yield of the semiconductor device 100.
    Type: Application
    Filed: January 11, 2012
    Publication date: May 3, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Keiji ISHIBASHI
  • Publication number: 20120100643
    Abstract: A method of evaluating damage of a compound semiconductor member, comprising: a step of performing spectroscopic ellipsometry measurement on a surface of the compound semiconductor member; and a step of evaluating damage on the surface of the compound semiconductor member, using a spectrum in a wavelength band containing a wavelength corresponding to a bandgap of the compound semiconductor member, in a spectrum of an optical constant obtained by the spectroscopic ellipsometry measurement.
    Type: Application
    Filed: January 3, 2012
    Publication date: April 26, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Akihiro Hachigo, Takayuki Nishiura, Keiji Ishibashi
  • Publication number: 20120094473
    Abstract: A group III nitride substrate on which an epitaxially grown layer of good quality can be formed, and a method of manufacturing the same are obtained. A GaN substrate (1) is one of the following: a group III nitride substrate, wherein the number of atoms of an acid material per square centimeter of a surface (3) is not more than 2×1014, and the number of silicon atoms per square centimeter of the surface (3) is not more than 3×1013; a group III nitride substrate, wherein the number of silicon atoms per square centimeter of a surface (3) is not more than 3×1013, and a haze level of the surface (3) is not more than 5 ppm; and a group III nitride substrate, wherein the number of atoms of an acid material per square centimeter of a surface (3) is not more than 2×1014, and a haze level of the surface (3) is not more than 5 ppm.
    Type: Application
    Filed: December 23, 2011
    Publication date: April 19, 2012
    Inventors: Keiji ISHIBASHI, Akihiro HACHIGO, Masato IRIKURA, Seiji NAKAHATA
  • Publication number: 20120068155
    Abstract: In a semiconductor device 100, it is possible to prevent C from piling up at a boundary face between an epitaxial layer 22 and a group III nitride semiconductor substrate 10 by the presence of 30×1010 pieces/cm2 to 2000×1010 pieces/cm2 of sulfide in terms of S and 2 at % to 20 at % of oxide in terms of O in a surface layer 12 with a front surface 10a having a specific plane orientation. Accordingly, a high-resistivity layer is prevented from being formed at the boundary face between the epitaxial layer 22 and the group III nitride semiconductor substrate 10. Consequently, it is possible to improve the emission intensity of the semiconductor device 100.
    Type: Application
    Filed: October 26, 2011
    Publication date: March 22, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Keiji ISHIBASHI
  • Publication number: 20120043645
    Abstract: A nitride semiconductor wafer is planar-processed by grinding a bottom surface of the wafer, etching the bottom surface by, e.g., KOH for removing a bottom process-induced degradation layer, chamfering by a rubber whetstone bonded with 100 wt %-60 wt % #3000-#600 diamond granules and 0 wt %-40 wt % oxide granules, grinding and polishing a top surface of the wafer, etching the top surface for eliminating a top process-induced degradation layer and maintaining a 0.5 ?m-10 ?m thick edge process-induced degradation layer.
    Type: Application
    Filed: November 2, 2011
    Publication date: February 23, 2012
    Inventors: Keiji ISHIBASHI, Hidenori Mikami, Naoki Matsumoto
  • Patent number: 8115927
    Abstract: A method of evaluating damage of a compound semiconductor member, comprising: a step of performing spectroscopic ellipsometry measurement on a surface of the compound semiconductor member; and a step of evaluating damage on the surface of the compound semiconductor member, using a spectrum in a wavelength band containing a wavelength corresponding to a bandgap of the compound semiconductor member, in a spectrum of an optical constant obtained by the spectroscopic ellipsometry measurement.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: February 14, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akihiro Hachigo, Takayuki Nishiura, Keiji Ishibashi
  • Publication number: 20120018736
    Abstract: A group III nitride substrate in one embodiment has a surface layer. The surface layer contains 3 at. % to 25 at. % of carbon and 5×1010 atoms/cm2 to 200×1010 atoms/cm2 of a p-type metal element. The group III nitride substrate has a stable surface.
    Type: Application
    Filed: October 3, 2011
    Publication date: January 26, 2012
    Inventor: Keiji ISHIBASHI
  • Patent number: 8101968
    Abstract: A group III nitride substrate on which an epitaxially grown layer of good quality can be formed, and a method of manufacturing the same are obtained. A GaN substrate is one of the following: a group III nitride substrate, wherein the number of atoms of an acid material per square centimeter of a surface is not more than 2×1014, and the number of silicon atoms per square centimeter of the surface is not more than 3×1013; a group III nitride substrate, wherein the number of silicon atoms per square centimeter of a surface is not more than 3×1013, and a haze level of the surface is not more than 5 ppm; and a group III nitride substrate, wherein the number of atoms of an acid material per square centimeter of a surface is not more than 2×1014, and a haze level of the surface is not more than 5 ppm.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: January 24, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Ishibashi, Akihiro Hachigo, Masato Irikura, Seiji Nakahata
  • Patent number: 8101523
    Abstract: A nitride semiconductor wafer is planar-processed by grinding a bottom surface of the wafer, etching the bottom surface by, e.g., KOH for removing a bottom process-induced degradation layer, chamfering by a rubber whetstone bonded with 100 wt %-60 wt % #3000-#600 diamond granules and 0 wt %-40 wt % oxide granules, grinding and polishing a top surface of the wafer, etching the top surface for eliminating a top process-induced degradation layer and maintaining a 0.5 ?m-10 ?m thick edge process-induced degradation layer.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: January 24, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Ishibashi, Hidenori Mikami, Naoki Matsumoto
  • Publication number: 20110306209
    Abstract: A group III nitride substrate in one embodiment has a surface layer. The surface layer contains 3 at. % to 25 at. % of carbon and 5×1010 atoms/cm2 to 200×1010 atoms/cm2 of a p-type metal element. The group III nitride substrate has a stable surface.
    Type: Application
    Filed: August 18, 2011
    Publication date: December 15, 2011
    Inventor: Keiji ISHIBASHI
  • Patent number: 8030681
    Abstract: A group III nitride substrate in one embodiment has a surface layer. The surface layer contains 3 at. % to 25 at. % of carbon and 5×1010 atoms/cm2 to 200×1010 atoms/cm2 of a p-type metal element. The group III nitride substrate has a stable surface.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: October 4, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Keiji Ishibashi
  • Patent number: 7981216
    Abstract: A vacuum processing apparatus, including a reactor and a partitioning plate having a plurality of through-holes through which radicals are allowed to pass and separating the reactor into a plasma generating space and a substrate process space, the process, such as a film deposition process, being carried out on a substrate placed in the substrate process space by delivering a gas into the plasma generating space for generating a plasma, producing radicals with the plasma thus generated, and delivering the radicals through the plurality of through-holes on the partitioning plate into the substrate process space. The partitioning plate includes a partitioning body having a plurality of through-holes and a control plate disposed on the plasma generating space side of the partitioning body and having radical passage holes in the positions corresponding to the plurality of through-holes on the partitioning plate.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: July 19, 2011
    Assignees: Canon Anelva Corporation, NEC Corporation
    Inventors: Keiji Ishibashi, Masahiko Tanaka, Akira Kumagai, Manabu Ikemoto, Katsuhisa Yuda
  • Patent number: 7973322
    Abstract: An active layer 17 is provided so as to emit light having a light emission wavelength in the range of 440 to 550 nm. A first conduction type gallium nitride-based semiconductor region 13, the active layer 17, and a second conduction type gallium nitride-based semiconductor region 15 are disposed in a predetermined axis Ax direction. The active layer 17 includes a well layer composed of hexagonal InXGa1-XN (0.16?X?0.35, X: strained composition), and the indium composition X is represented by a strained composition. The a-plane of the hexagonal InXGa1-XN is aligned in the predetermined axis Ax direction. The thickness of the well layer is in the range of more than 2.5 nm to 10 nm. When the thickness of the well layer is set to 2.5 nm or more, a light emitting device having a light emission wavelength of 440 nm or more can be formed.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: July 5, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Katsushi Akita, Takashi Kyono, Keiji Ishibashi, Hitoshi Kasai