Patents by Inventor Kelin J. Kuhn

Kelin J. Kuhn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10074357
    Abstract: A system includes a processor and a phased array, coupled to the processor, having an arrayed waveguide for acoustic waves to enable directional sound communication.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: September 11, 2018
    Assignee: Intel Corporation
    Inventors: Sasikanth Manipatruni, Kelin J. Kuhn, Debendra Mallik, John C. Johnson
  • Patent number: 10074573
    Abstract: Complimentary metal-oxide-semiconductor nanowire structures are described. For example, a semiconductor structure includes a first semiconductor device. The first semiconductor device includes a first nanowire disposed above a substrate. The first nanowire has a mid-point a first distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. A first gate electrode stack completely surrounds the discrete channel region of the first nanowire. The semiconductor structure also includes a second semiconductor device. The second semiconductor device includes a second nanowire disposed above the substrate. The second nanowire has a mid-point a second distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. The first distance is different from the second distance.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: September 11, 2018
    Assignee: Intel Corporation
    Inventors: Seiyon Kim, Kelin J. Kuhn, Tahir Ghani, Anand S. Murthy, Annalisa Cappellani, Stephen M. Cea, Rafael Rios, Glenn A. Glass
  • Patent number: 10026829
    Abstract: Semiconductor devices with isolated body portions are described. For example, a semiconductor structure includes a semiconductor body disposed above a semiconductor substrate. The semiconductor body includes a channel region and a pair of source and drain regions on either side of the channel region. An isolation pedestal is disposed between the semiconductor body and the semiconductor substrate. A gate electrode stack at least partially surrounds a portion of the channel region of the semiconductor body.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: July 17, 2018
    Assignee: Intel Corporation
    Inventors: Annalisa Cappellani, Stephen M. Cea, Tahir Ghani, Harry Gomez, Jack T. Kavalieros, Patrick H. Keys, Seiyon Kim, Kelin J. Kuhn, Aaron D. Lilak, Rafael Rios, Mayank Sahni
  • Patent number: 9978636
    Abstract: Isolated and bulk semiconductor devices formed on a same bulk substrate and methods to form such devices are described. For example, a semiconductor structure includes a first semiconductor device having a first semiconductor body disposed on a bulk substrate. The first semiconductor body has an uppermost surface with a first horizontal plane. The semiconductor structure also includes a second semiconductor device having a second semiconductor body disposed on an isolation pedestal. The isolation pedestal is disposed on the bulk substrate. The second semiconductor body has an uppermost surface with a second horizontal plane. The first and second horizontal planes are co-planar.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: May 22, 2018
    Assignee: Intel Corporation
    Inventors: Annalisa Cappellani, Kelin J. Kuhn, Rafael Rios, Harry Gomez
  • Publication number: 20180122901
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
    Type: Application
    Filed: December 29, 2017
    Publication date: May 3, 2018
    Inventors: Seiyon KIM, Kelin J. KUHN, Tahir GHANI, Anand S. MURTHY, Mark ARMSTRONG, Rafael RIOS, Abhijit Jayant PETHE, Willy RACHMADY
  • Patent number: 9935107
    Abstract: Techniques and methods related to dual strained cladding layers for semiconductor devices, and systems incorporating such semiconductor devices.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: April 3, 2018
    Assignee: Intel Corporation
    Inventors: Stephen M Cea, Roza Kotlyar, Harold W Kennel, Kelin J Kuhn, Tahir Ghani
  • Patent number: 9935205
    Abstract: A nanowire transistor of the present description may be produced with internal spacers formed by using sacrificial spacers during the fabrication thereof. Once the nanowire transistor is formed, the sacrificial spacers, which are position between the transistor gate and the source and drains (respectively), may be removed. The sacrificial material between channel nanowires of the nanowire transistor may then be removed and a dielectric material may be deposited to fill the spaces between the channel nanowires. The dielectric material not between the channel nanowires may be removed to form the internal spacers. External spacers, which are position between the transistor gate and the source and drains (respectively), may then be formed adjacent the internal spacers and transistor channel nanowires.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: April 3, 2018
    Assignee: Intel Corporation
    Inventors: Seiyon Kim, Daniel A. Simon, Nadia M. Rahhal-Orabi, Chul-Hyun Lim, Kelin J. Kuhn
  • Patent number: 9926193
    Abstract: Nanoelectromechanical (NEMS) devices having nanomagnets for an improved range of operating voltages and improved control of dimensions of a cantilever are described. For example, in an embodiment, a nanoelectromechanical (NEMS) device includes a substrate layer, a first magnetic layer disposed above the substrate layer, a first dielectric layer disposed above the first magnetic layer, a second dielectric disposed above the first dielectric layer, and a cantilever disposed above the second dielectric layer. The cantilever bends from a first position to a second position towards the substrate layer when a voltage is applied to the cantilever.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: March 27, 2018
    Assignee: Intel Corporation
    Inventors: Jorge A. Munoz, Dmitri E. Nikonov, Kelin J. Kuhn, Patrick Theofanis, Chytra Pawashe, Kevin Lin, Seiyon Kim
  • Patent number: 9911835
    Abstract: Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: March 6, 2018
    Assignee: Intel Corporation
    Inventors: Roza Kotlyar, Stephen M. Cea, Gilbert Dewey, Benjamin Chu-Kung, Uygar E. Avci, Rafael Rios, Anurag Chaudhry, Thomas D. Linton, Jr., Ian A. Young, Kelin J. Kuhn
  • Patent number: 9893167
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing photo-definable spacer material in dimples etched adjacent to the channel region. Photo-definable material remains in the dimples by altering the etch characteristics of material outside of the dimples and selectively removing altered photo-definable material outside of the dimples.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: February 13, 2018
    Assignee: Intel Corporation
    Inventors: Seiyon Kim, Daniel A. Simon, Kelin J. Kuhn, Curtis W. Ward
  • Patent number: 9882053
    Abstract: An embodiment concerns selective etching of a structure (e.g., a fin) to form a void with the shape of the original structure. This void then functions as a mold. Flowable dielectric material fills the void to form the same shape as the original structure/mold. Post-processing then occurs (e.g., oxidation build up and annealing) to harden the dielectric in the void. The resulting product is a molded dielectric nanostructure that has the same shape as the original structure but consists of a different material (e.g., dielectric instead of silicon). Other embodiments are described herein.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: January 30, 2018
    Assignee: Intel Corporation
    Inventors: Seiyon Kim, Kelin J. Kuhn
  • Patent number: 9859368
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: January 2, 2018
    Assignee: Intel Corporation
    Inventors: Seiyon Kim, Kelin J. Kuhn, Tahir Ghani, Anand S. Murthy, Mark Armstrong, Rafael Rios, Abhijit Jayant Pethe, Willy Rachmady
  • Publication number: 20170358658
    Abstract: Embodiments of the invention include metal oxide metal field effect transistors (MOMFETs) and methods of making such devices. In embodiments, the MOMFET device includes a source and a drain with a channel disposed between the source and the drain. According to an embodiment, the channel has at least one confined dimension that produces a quantum confinement effect in the channel. In an embodiment, the MOMFET device also includes a gate electrode that is separated from the channel by a gate dielectric. According to embodiments, the band-gap energy of the channel may be modulated by changing the size of the channel, the material used for the channel, and/or the surface termination applied to the channel. Embodiments also include forming an type device and a P-type device by controlling the work-function of the source and drain relative to the conduction band and valance band energies of the channel.
    Type: Application
    Filed: September 26, 2014
    Publication date: December 14, 2017
    Inventors: Rafael RIOS, Kelin J. KUHN, Seiyon KIM, Justin R. Weber
  • Patent number: 9812524
    Abstract: Techniques are disclosed for customization of nanowire transistor devices to provide a diverse range of channel configurations and/or material systems within the same integrated circuit die. In accordance with one example embodiment, sacrificial fins are removed and replaced with custom material stacks of arbitrary composition and strain suitable for a given application. In one such case, each of a first set of the sacrificial fins is recessed or otherwise removed and replaced with a p-type layer stack, and each of a second set of the sacrificial fins is recessed or otherwise removed and replaced with an n-type layer stack. The p-type layer stack can be completely independent of the process for the n-type layer stack, and vice-versa. Numerous other circuit configurations and device variations are enabled using the techniques provided herein.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: November 7, 2017
    Assignee: INTEL CORPORATION
    Inventors: Glenn A. Glass, Kelin J. Kuhn, Seiyon Kim, Anand S. Murthy, Daniel B. Aubertine
  • Publication number: 20170271501
    Abstract: Described is a TFET comprising: a nanowire having doped regions for forming source and drain regions, and an un-doped region for coupling to a gate region; and a first termination material formed over the nanowire; and a second termination material formed over a section of the nanowire overlapping the gate and source regions. Described is another TFET comprising: a first section of a nanowire having doped regions for forming source and drain regions, and an undoped region for coupling to a gate region; a second section of the nanowire extending orthogonal to the first section, the second section formed next to the gate and source regions; and a termination material formed over the first and second sections of the nanowire.
    Type: Application
    Filed: September 24, 2014
    Publication date: September 21, 2017
    Inventors: Uygar E. AVCI, Rafael RIOS, Kelin J. KUHN, Ian A. YOUNG, Justin R. WEBER
  • Publication number: 20170263721
    Abstract: Methods of fabricating a first contact to a semiconductor device, which fundamentally comprises providing a semiconductor device formed on a substrate. The substrate further includes a conductive surface. A dielectric layer is formed over the substrate and has an opening exposing the conductive surface. The opening extends an entire length of the semiconductor device, partway down the entire length of the device, extending from the device onto adjacent field of the device, or and a combination thereof. A barrier layer is formed within the opening. A copper containing material fills the opening to form a first contact to the semiconductor device.
    Type: Application
    Filed: May 30, 2017
    Publication date: September 14, 2017
    Applicant: INTEL CORPORATION
    Inventors: KELIN J. KUHN, KAIZAD MISTRY, MARK BOHR, CHRIS AUTH
  • Patent number: 9691843
    Abstract: Common-substrate semiconductor devices having nanowires or semiconductor bodies with differing material orientation or composition and methods to form such common-substrate devices are described. For example, a semiconductor structure includes a first semiconductor device having a first nanowire or semiconductor body disposed above a crystalline substrate. The first nanowire or semiconductor body is composed of a semiconductor material having a first global crystal orientation. The semiconductor structure also includes a second semiconductor device having a second nanowire or semiconductor body disposed above the crystalline substrate. The second nanowire or semiconductor body is composed of a semiconductor material having a second global crystal orientation different from the first global orientation. The second nanowire or semiconductor body is isolated from the crystalline substrate by an isolation pedestal disposed between the second nanowire or semiconductor body and the crystalline substrate.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: June 27, 2017
    Assignee: Intel Corporation
    Inventors: Annalisa Cappellani, Peter G. Tolchinsky, Kelin J. Kuhn, Glenn A. Glass, Van H. Le
  • Patent number: 9680013
    Abstract: A method and a device made according to the method. The method comprises providing a substrate including a first material, and providing a fin including a second material, the fin being disposed on the substrate and having a device active portion, the first material and the second material presenting a lattice mismatch between respective crystalline structures thereof. Providing the fin includes providing a biaxially strained film including the second material on the substrate; and removing parts of the biaxially strained film to form a substantially uniaxially strained fin therefrom.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: June 13, 2017
    Assignee: Intel Corporation
    Inventors: Stephen M. Cea, Roza Kotlyar, Jack T. Kavalieros, Martin D. Giles, Tahir Ghani, Kelin J. Kuhn, Markus Kuhn, Nancy M. Zelick
  • Publication number: 20170162676
    Abstract: Semiconductor devices with isolated body portions are described. For example, a semiconductor structure includes a semiconductor body disposed above a semiconductor substrate. The semiconductor body includes a channel region and a pair of source and drain regions on either side of the channel region. An isolation pedestal is disposed between the semiconductor body and the semiconductor substrate. A gate electrode stack at least partially surrounds a portion of the channel region of the semiconductor body.
    Type: Application
    Filed: February 16, 2017
    Publication date: June 8, 2017
    Inventors: Annalisa CAPPELLANI, Stephen M. CEA, Tahir GHANI, Harry GOMEZ, Jack T. KAVALIEROS, Patrick H. KEYS, Seiyon KIM, Kelin J. KUHN, Aaron D. LILAK, Rafael RIOS, Mayank SAHNI
  • Publication number: 20170158501
    Abstract: Nanoelectromechanical (NEMS) devices having nanomagnets for an improved range of operating voltages and improved control of dimensions of a cantilever are described. For example, in an embodiment, a nanoelectromechanical (NEMS) device includes a substrate layer, a first magnetic layer disposed above the substrate layer, a first dielectric layer disposed above the first magnetic layer, a second dielectric disposed above the first dielectric layer, and a cantilever disposed above the second dielectric layer. The cantilever bends from a first position to a second position towards the substrate layer when a voltage is applied to the cantilever.
    Type: Application
    Filed: June 27, 2014
    Publication date: June 8, 2017
    Applicant: Intel Corporation
    Inventors: Jorge A. MUNOZ, Dmitri E. NIKONOV, Kelin J. KUHN, Patrick THEOFANIS, Chytra PAWASHE, Kevin LIN, Seiyon KIM