Patents by Inventor Kelly Cameron

Kelly Cameron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070011595
    Abstract: Communication decoder employing single trellis to support multiple code rates and/or multiple modulations. A single trellis is employed by the decoder to decode a plurality of encoded symbols. Each of the plurality of encoded symbols is governed by a rate control. A rate control sequence, having a period, is used to decode the plurality of encoded symbols that may be arranged within a frame. Various parameters of the plurality of encoded symbols may vary on a symbol by symbol basis; these parameters may include modulation, constellation, mapping, and/or bandwidth efficiency. For example, various symbols may be encoded differently, yet they may all be decoded using the same trellis. The functionality of this decoder may be implemented within a variety of different decoder embodiments including a trellis code modulation (TCM) decoder, a turbo trellis code modulation (TTCM) decoder, and/or a parallel concatenated turbo code modulation (PC-TCM) decoder.
    Type: Application
    Filed: July 26, 2006
    Publication date: January 11, 2007
    Applicant: Broadcom Corporation, a California Corporation
    Inventors: Kelly Cameron, Ba-Zhong Shen, Hau Tran
  • Publication number: 20060271966
    Abstract: Digital packets, defined by a sync byte and then 130 MPEG2 compressed QPSK signal bytes, from a satellite transponder are reformatted prior to transmission to television receivers in apartments in a building wired to distribute video signals. A side byte between such sync and signal bytes in each packet indicates (a) any QPSK packet uncorrectable error and (b) processing information which allows automatic reconfiguration at the settop box. Additional FEC bytes correct to 8 errors within a MPEG2QPSK packet. The system removes the FEC bytes and reframes the MPEG2QPSK packets into a superpacket by converting a first number of the MPEG2QPSK packets to a second number of MPEG2QAM packets. An added sync byte indicates the beginning of each such MPEG2QAM packet. The system adds side data bytes including any uncorrectable errors in each MPEG2QPSK packet and adds a new, less complicated FEC to each MPEG2QAM packet.
    Type: Application
    Filed: November 21, 2005
    Publication date: November 30, 2006
    Inventors: Frederik Staal, Robert Hawley, Kelly Cameron
  • Publication number: 20060251184
    Abstract: A method for parallel concatenated (Turbo) encoding and decoding. Turbo encoders receive a sequence of input data tuples and encode them. The input sequence may correspond to a sequence of an original data source, or to an already coded data sequence such as provided by a Reed-Solomon encoder. A turbo encoder generally comprises two or more encoders separated by one or more interleavers. The input data tuples may be interleaved using a modulo scheme in which the interleaving is according to some method (such as block or random interleaving) with the added stipulation that the input tuples may be interleaved only to interleaved positions having the same modulo-N (where N is an integer) as they have in the input data sequence. If all the input tuples are encoded by all encoders then output tuples can be chosen sequentially from the encoders and no tuples will be missed.
    Type: Application
    Filed: July 5, 2006
    Publication date: November 9, 2006
    Applicant: Broadcom Corporation, a California Corporation
    Inventors: Kelly Cameron, Ba-Zhong Shen, Hau Tran, Christopher Jones, Thomas Hughes
  • Publication number: 20060250285
    Abstract: A communications system, having a combination Reed-Solomon encoder and a Turbo-Code encoder Data frame configuration which may be changed to accommodate embedded submarkers of known value are embedded in with the data order to aid synchronization in the receiver system, by providing strings of known symbols. The string of known symbols may be the same as the symbols within a training header that appears at the beginning of a data frame. Frame parameters may be tailored to individual users and may be controlled by information pertaining to receivers, such as bit error rate, of the receiver. Additional headers may be interspersed within the data in order to assist in receiver synchronization. Frames of data may be acquired quickly by a receiver by having a string of symbols representing the phase offset between successive header symbols in the header training sequence in order to determine the carrier offset.
    Type: Application
    Filed: July 3, 2006
    Publication date: November 9, 2006
    Applicant: Broadcom Corporation, a California Corporation
    Inventors: Steven Jaffe, Kelly Cameron
  • Publication number: 20060224935
    Abstract: System correcting random and/or burst errors using RS (Reed-Solomon) code, turbo/LDPC (Low Density Parity Check) code and convolutional interleave. A novel approach is presented that combines different coding types within a communication system to perform various types of error correction. This combination of accommodating different coding types may be employed at either end of a communication channel (e.g., at a transmitter end when performing encoding and/or at a receiver end when performing decoding). By combining different coding types within a communication system, the error correcting capabilities of the overall system is significantly improved. The appropriate combination of turbo code and/or LDPC code along with RS code allows for error correction or various error types including random error and burst error (or impulse noise).
    Type: Application
    Filed: December 1, 2005
    Publication date: October 5, 2006
    Inventors: Kelly Cameron, Ba-Zhong Shen, Hau Tran
  • Publication number: 20060224934
    Abstract: System correcting random and/or burst errors using RS (Reed-Solomon) code, turbo/LDPC (Low Density Parity Check) code and convolutional interleave. A novel approach is presented that combines different coding types within a communication system to perform various types of error correction. This combination of accommodating different coding types may be employed at either end of a communication channel (e.g., at a transmitter end when performing encoding and/or at a receiver end when performing decoding). By combining different coding types within a communication system, the error correcting capabilities of the overall system is significantly improved. The appropriate combination of turbo code and/or LDPC code along with RS code allows for error correction or various error types including random error and burst error (or impulse noise).
    Type: Application
    Filed: December 1, 2005
    Publication date: October 5, 2006
    Inventors: Kelly Cameron, Ba-Zhong Shen, Hau Tran
  • Publication number: 20060195754
    Abstract: AMP (Accelerated Message Passing) decoder adapted for LDPC (Low Density Parity Check) codes. A novel approach is presented by which the LDPC coded signals may be decoded in a more efficient, faster, and less computationally intensive manner. Soft bit information, generated from decoding a higher layer square sub-matrix of a parity check matrix of the LDPC code, is employed to assist in the decoding of other square sub-matrices in subsequent layers. This approach allows the decoding of an LDPC code whose parity check matrix has column weight more than 1 (e.g., 2 or more), thereby allowing a much broader selection of LDPC codes to be employed in various communication systems. This approach also provides much improvement in terms of BER/BLER as a function of Eb/No (or SNR), and it can provide comparable (if not better) performance when performing significantly fewer (e.g., up to 50% fewer) decoding iterations that other approaches.
    Type: Application
    Filed: October 31, 2005
    Publication date: August 31, 2006
    Inventors: Ba-Zhong Shen, Hau Tran, Kelly Cameron
  • Patent number: 7080310
    Abstract: A method for decoding an algebraic-coded message including determining a discrepancy indicator; determining an error locator polynomial according to a modified Berlekamp-Massey algorithm such that an uncorrectable message is detected; and producing a perceptible indication of the detected uncorrectable message. An apparatus includes storage devices, arithmetic components, and an uncorrectable message detector.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: July 18, 2006
    Assignee: Broadcom Corporation
    Inventor: Kelly Cameron
  • Publication number: 20060156206
    Abstract: Algebraic method to construct LDPC (Low Density Parity Check) codes with parity check matrix having CSI (Cyclic Shifted Identity) sub-matrices. A novel approach is presented by which identity sub-matrices undergo cyclic shifting, thereby generating CSI sub-matrices that are arranged forming a parity check matrix of an LDPC code. The parity check matrix of the LDPC code may correspond to a regular LDPC code, or the parity check matrix of the LDPC code may undergo further modification to transform it to that of an irregular LDPC code. The parity check matrix of the LDPC code may be partitioned into 2 sub-matrices such that one of these 2 sub-matrices is transformed to be a block dual diagonal matrix; the other of these 2 sub-matrices may be modified using a variety of means, including the density evolution approach, to ensure the desired bit and check degrees of the irregular LDPC code.
    Type: Application
    Filed: December 1, 2005
    Publication date: July 13, 2006
    Inventors: Ba-Zhong Shen, Joseph Lauer, Christopher Hansen, Kelly Cameron
  • Publication number: 20060156179
    Abstract: Construction of LDPC (Low Density Parity Check) codes using GRS (Generalized Reed-Solomon) code. A novel approach is presented by which a GRS code may be employed to generate a wide variety of types of LDPC codes. Such GRS based LDPC codes may be employed within various types of transceiver devices implemented within communication systems. This approach may be employed to generate GRS based LDPC codes particular designed for various application arenas. As one example, such a GRS based LDPC code may be specifically designed for use in communication systems that operate in accordance with any standards and/or recommended practices of the IEEE P802.3an (10GBASE-T) Task Force.
    Type: Application
    Filed: July 27, 2005
    Publication date: July 13, 2006
    Inventors: Ba-Zhong Shen, Scott Powell, Kelly Cameron, Hau Tran
  • Publication number: 20060156169
    Abstract: LDPC (Low Density Parity Check) coding and interleaving implemented in multiple-input-multiple-output (MIMO) communication systems. Initially, a novel approach is presented by which a wide variety of irregular LDPC codes may be generated using GRS or RS codes. These irregular LDPC codes can provide better overall performance than regular LDPC codes in terms of providing for lower BER (Bit Error Rate) as a function of SNR (Signal to Noise Ratio). A variety of communication device types are also presented that may employ the error correcting coding using a GRS-based irregular LDPC code, along with appropriately selected interleaving, to provide for even better performance. These communication devices may be implemented to in wireless communication systems including those that comply with the recommendation practices and standards being developed by the IEEE 802.11n Task Group (i.e., the Task Group that is working to develop a standard for 802.11 TGn (High Throughput)).
    Type: Application
    Filed: November 2, 2005
    Publication date: July 13, 2006
    Inventors: Ba-Zhong Shen, Christopher Hansen, Joseph Lauer, Kelly Cameron, Tak Lee, Hau Tran
  • Publication number: 20060156168
    Abstract: Construction of Irregular LDPC (Low Density Parity Check) codes using RS (Reed-Solomon) codes or GRS (Generalized Reed-Solomon) codes. A novel approach is presented by which a wide variety of irregular LDPC codes may be generated using GRS or RS codes. These irregular LDPC codes can provide better overall performance than regular LDPC codes in terms of providing for lower BER (Bit Error Rate) as a function of SNR (Signal to Noise Ratio). Such an irregular LDPC code may be appropriately designed using these principles thereby generating a code that is suitable for use in wireless communication systems including those that comply with the recommendation practices and standards being developed by the IEEE (Institute of Electrical & Electronics Engineers) 802.11n Task Group (i.e., the Task Group that is working to develop a standard for 802.11 TGn (High Throughput)).
    Type: Application
    Filed: November 2, 2005
    Publication date: July 13, 2006
    Inventors: Ba-Zhong Shen, Kelly Cameron, Tak Lee, Hau Tran
  • Publication number: 20060107179
    Abstract: Amplifying magnitude metric of received signals during iterative decoding of LDPC code and LDPC coded modulation. By appropriately selecting a metric coefficient value that is used to calculate the initial conditions when decoding LDPC coded signals, a significant reduction in BER may be achieved at certain SNRs. The appropriate selection of the metric coefficient value may be performed depending on the particular SNR at which a communication system is operating. By adjusting this metric coefficient value according to the given LDPC code, modulation, and noise variance, the overall performance of the decoding may be significantly improved. The convergence speed is slowed down so that the decoder will not go to the wrong codeword, and the moving range of the outputs of the decoder is restricted so that the output will not oscillate too much and will eventually move to the correct codeword.
    Type: Application
    Filed: July 27, 2005
    Publication date: May 18, 2006
    Inventors: Ba-Zhong Shen, Kelly Cameron, Scott Powell, Hau Tran
  • Publication number: 20060085720
    Abstract: Message passing memory and barrel shifter arrangement in LDPC (Low Density Parity Check) decoder supporting multiple LDPC codes. A novel approach is presented by which a barrel shifter may be implemented in conjunction with a single message passing memory within an LDPC decoder. This arrangement also allows for a single bit/check processor to be employed that is operable to perform updating of edge messages with respect to check nodes as well as updating of edge messages with respect to bit nodes. There are a variety of embodiments by which the barrel shifter and the message passing memory may be implemented. By using this approach, a common architecture and design may operate to decode various types of LDPC coded signals including those whose code rate and/or modulation (including constellation shape and mapping) may vary as frequently as on a frame by frame basis or even on a block by block basis.
    Type: Application
    Filed: June 30, 2005
    Publication date: April 20, 2006
    Inventors: Hau Thien Tran, Kelly Cameron, Ba-Zhong Shen
  • Patent number: 7024597
    Abstract: A memory-efficient convolutional interleaver/deinterleaver with a memory array, a write commutator, and a read commutator wherein the commutators perform their respective write and read operations relative to a preselected memory cell after a predetermined delay. The delay is chosen using a modulo-based technique, such that an efficient implementation of a Ramsey Type-II interleaver is realized.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: April 4, 2006
    Assignee: Broadcom Corporation
    Inventor: Kelly Cameron
  • Publication number: 20060045197
    Abstract: LDPC (Low Density Parity Check) coded 128 DSQ (Double Square QAM) constellation modulation and its associated labeling. A novel means is introduced by which a constellation may be arranged and mapping in its symbols may be determined to provide for improved performance. One application area in which this may be employed is transmission over twisted pair (typically copper) cabling existent within data centers of various networks. The operation of the IEEE 802.3 Ethernet local area networks currently being used (as well as those currently under development) would benefit greatly by employing the various principles presented herein. When this novel approach of an LDPC coded 128 DSQ constellation modulation combined with TH (Tomlinson-Harashima) preceding is employed within a communication device at a transmitter end of a communication channel (i.e., in a transmitter and/or a transceiver), the overall operation of a communication system may improve significantly when compared to prior techniques.
    Type: Application
    Filed: August 25, 2005
    Publication date: March 2, 2006
    Inventors: Gottfried Ungerboeck, Ba-Zhong Shen, Scott Powell, Kelly Cameron, Hau Tran
  • Publication number: 20060045213
    Abstract: Decoding error correcting codes transmitted through multiple wire twisted pair cables with uneven noise on the wires. A novel approach is presented by which the metrics may be calculated for signals received over multi-wire (or alternatively referred to as multi-channel, and/or multi-path) communication channels to exploit an uneven distribution of noise among those wires for improved performance. In addition, this approach may also be performed in combination with employing an amplification factor to modify the metrics employed when performing ECC (Error Correcting Code) decoding. Moreover, when information is known concerning which 1 or more paths (e.g., wires) has an SNR that is different (e.g., lower in some cases) from the others, an even better adapted means of calculating the metrics associated with each of the paths (e.g., wires) may be employed to provide for improved performance with respect to iterative decoding processing of signals encoded using ECCs.
    Type: Application
    Filed: June 30, 2005
    Publication date: March 2, 2006
    Inventors: Ba-Zhong Shen, Scott Powell, Kelly Cameron
  • Publication number: 20060041821
    Abstract: A short length LDPC (Low Density Parity Check) code and modulation adapted for high speed Ethernet applications. In some instances, the short length-LDPC code and modulation may be employed within the recommended practices currently being developed by the IEEE 802.3an (10GBASE-T) Task Force. The IEEE 802.3an (10GBASE-T) Task Force has been commissioned to develop and standardize communications protocol adapted particularly for Ethernet operation over 4 wire twisted pair cables. A new LDPC code, some possible embodiments of constellations and the corresponding mappings, as well as possible embodiments of various parity check matrices, H, of the LDPC code are presented herein to provide for better overall performance than other proposed LDPC codes existent in the art of high speed Ethernet applications. Moreover, this proposed LDPC code may be decoded using a communication device having much less complexity than required to decode other proposed LDPC codes existent in this technology space.
    Type: Application
    Filed: July 27, 2005
    Publication date: February 23, 2006
    Inventors: Ba-Zhong Shen, Kelly Cameron, Hau Tran, Scott Powell
  • Publication number: 20050268206
    Abstract: Common circuitry supporting both bit node and check node processing in LDPC (Low Density Parity Check) decoder. A novel approach is presented by which a decoder may use the same circuitry to perform updating of edge messages with respect to bit nodes as well as updating of edge messages with respect to check nodes in the context of decoding LDPC coded signals. In addition, several very efficient architectures are presented to performing check node processing that involves the updating of edge messages with respect to check nodes. One embodiment performs check node processing using min** (min-double-star) processing in conjunction with min**? (min-double-star-minus) processing. Another embodiment performs check node processing using min†† (min-double-dagger) processing in conjunction with min†? (min-dagger-minus) processing. In addition, a single FIFO may be implemented to service a number of macro blocks in a parallel decoding implementation.
    Type: Application
    Filed: June 30, 2005
    Publication date: December 1, 2005
    Inventors: Hau Thien Tran, Kelly Cameron, Ba-Zhong Shen
  • Publication number: 20050262421
    Abstract: Efficient front end memory arrangement to support parallel bit node and check node processing in LDPC (Low Density Parity Check) decoders. A novel approach is presented by which the front end design of device capable to decode LDPC coded signals facilitates parallel decoding processing of the LDPC coded signal. The implementation of the front end memory management in conjunction with the implementation of a metric generator operate cooperatively lend themselves for very efficient parallel decoding processing of LDPC coded signals. There are several embodiments by which the front end memory management and the metric generator may be implemented to facilitate this parallel decoding processing of LDPC coded signals. This also allows for the decoding of variable code rate and/or variable modulation signals whose code rate and/or modulation varies as frequently as on a block by block basis (e.g., a block may include a group of symbols within a frame).
    Type: Application
    Filed: June 30, 2005
    Publication date: November 24, 2005
    Inventors: Hau Tran, Kelly Cameron, Ba-Zhong Shen