Patents by Inventor Kezhakkedath R. Udayakumar

Kezhakkedath R. Udayakumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110183471
    Abstract: An F-RAM package having a semiconductor die containing F-RAM circuitry, a mold compound, and a stress buffer layer that is at least partially located between the semiconductor die and the mold compound. Also, a method for making an F-RAM package that includes providing a semiconductor die containing F-RAM circuitry, forming a patterned stress buffer layer over the semiconductor die, and forming a mold compound coupled to the stress buffer layer.
    Type: Application
    Filed: January 14, 2011
    Publication date: July 28, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Scott R. Summerfelt, Kezhakkedath R. Udayakumar, John P. Campbell, Hugh P. McAdams
  • Patent number: 7985603
    Abstract: A method of manufacturing a semiconductor device. The method comprises forming conductive and ferroelectric material layers on a semiconductor substrate. The material layers are patterned to form electrodes and a ferroelectric layer of a ferroelectric capacitor, wherein a conductive residue is generated on sidewalls of the ferroelectric capacitor as a by-product of the patterning. The method also comprises removing the conductive residue using a physical plasma etch clean-up process that includes maintaining a substrate temperature that is greater than about 60° C.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: July 26, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Francis Gabriel Celii, Robert Kraft, Kezhakkedath R. Udayakumar, Scott Robert Summerfelt, Theodore S. Moise
  • Patent number: 7935543
    Abstract: One aspect of the invention relates to a method of manufacturing an integrated circuit comprising forming an array of ferroelectric memory cells on a semiconductor substrate, heating the substrate to a temperature near a Curie temperature of the ferroelectric cores, and subjecting the substrate to a temperature program, whereby thermally induced stresses on the ferroelectric cores cause a switched polarization of the cores to increase by at least about 25% as the cores cool to about room temperature. Embodiments of the invention include metal filled vias of expanded cross-section above and below the ferroelectric cores, which increase the thermal stresses on the ferroelectric cores during cooling.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: May 3, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Theodore S. Moise, IV, Scott R. Summerfelt, Kezhakkedath R. Udayakumar
  • Publication number: 20110062550
    Abstract: An integrated circuit containing a FeCap array. The FeCap array is at least partially surrounded on the sides by hydrogen barrier walls and on the top by a hydrogen barrier top plate. A method for at least partially enclosing a FeCap array with hydrogen barrier walls and a hydrogen barrier top plate.
    Type: Application
    Filed: March 5, 2010
    Publication date: March 17, 2011
    Applicant: Texas Instruments Incorporated
    Inventors: Kezhakkedath R. Udayakumar, Scott R. Summerfelt, Ted S. Moise, Manoj K. Jain
  • Publication number: 20100270601
    Abstract: One aspect of the invention provides a method of manufacturing a FeRAM semiconductor device having reduce single bit fails. This aspect includes forming an electrical contact within a dielectric layer located over a semiconductor substrate and forming a first barrier layer over the dielectric layer and the electrical contact. The first barrier layer is formed by depositing multiple barrier layers and densifying each of the barrier layers after its deposition. This forms a stack of multiple barrier layers of a same elemental composition. The method further includes forming a second barrier layer over the first barrier layer and forming a lower capacitor electrode, a ferroelectric dielectric layer over the lower capacitor, and forming an upper capacitor electrode over the ferroelectric dielectric layer. A device made by this method is also provided herein.
    Type: Application
    Filed: July 1, 2010
    Publication date: October 28, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kezhakkedath R. Udayakumar, Ted S. Moise, Qi-Du Jiang
  • Patent number: 7799582
    Abstract: A ferroelectric memory device is fabricated while mitigating edge degradation. A bottom electrode is formed over one or more semiconductor layers. A ferroelectric layer is formed over the bottom electrode. A top electrode is formed over the ferroelectric layer. The top electrode, the ferroelectric layer, and the bottom electrode are patterned or etched. A dry clean is performed that mitigates edge degradation. A wet etch/clean is then performed.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: September 21, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Kezhakkedath R. Udayakumar, Lindsey H. Hall, Francis G. Celii, Scott R. Summerfelt
  • Patent number: 7772014
    Abstract: One aspect of the invention provides a method of manufacturing a FeRAM semiconductor device having reduce single bit fails. This aspect includes forming an electrical contact within a dielectric layer located over a semiconductor substrate and forming a first barrier layer over the dielectric layer and the electrical contact. The first barrier layer is formed by depositing multiple barrier layers and densifying each of the barrier layers after its deposition. This forms a stack of multiple barrier layers of a same elemental composition. The method further includes forming a second barrier layer over the first barrier layer and forming a lower capacitor electrode, a ferroelectric dielectric layer over the lower capacitor, and forming an upper capacitor electrode over the ferroelectric dielectric layer. A device made by this method is also provided herein.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: August 10, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Kezhakkedath R. Udayakumar, Ted S. Moise, Qi-Du Jiang
  • Patent number: 7723199
    Abstract: A method of manufacturing a semiconductor device is presented. In one aspect, the method comprises forming conductive and ferroelectric material layers on a semiconductor substrate. The material layers are patterned to form electrodes and a ferroelectric layer of a ferroelectric capacitor, wherein a conductive noble metal-containing polymer is generated on sidewalls of the ferroelectric capacitor. The method also comprises converting the conductive noble metal-containing polymer into a non-conducting metal oxide. Converting includes forming a water-soluble metal salt from the conductive noble metal-containing polymer and reacting the water-soluble metal salt with an acqueous acidic solution to form a metal hydroxide. Converting also includes oxidizing the metal hydroxide to form the non-conducting metal oxide.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: May 25, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Yaw S. Obeng, Kezhakkedath R. Udayakumar, Scott Robert Summerfelt, Sanjeev Aggarwal, Francis Gabriel Celii, Lindsey H. Hall, Robert Kraft, Theodore S. Moise
  • Publication number: 20090275147
    Abstract: A ferroelectric memory device is fabricated while mitigating edge degradation. A bottom electrode is formed over one or more semiconductor layers. A ferroelectric layer is formed over the bottom electrode. A top electrode is formed over the ferroelectric layer. The top electrode, the ferroelectric layer, and the bottom electrode are patterned or etched. A dry clean is performed that mitigates edge degradation. A wet etch/clean is then performed.
    Type: Application
    Filed: July 14, 2009
    Publication date: November 5, 2009
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kezhakkedath R. UDAYAKUMAR, Lindsey H. HALL, Francis G. CELII, Scott R. SUMMERFELT
  • Publication number: 20090275148
    Abstract: A ferroelectric memory device is fabricated while mitigating edge degradation. A bottom electrode is formed over one or more semiconductor layers. A ferroelectric layer is formed over the bottom electrode. A top electrode is formed over the ferroelectric layer. The top electrode, the ferroelectric layer, and the bottom electrode are patterned or etched. A dry clean is performed that mitigates edge degradation. A wet etch/clean is then performed.
    Type: Application
    Filed: July 14, 2009
    Publication date: November 5, 2009
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kezhakkedath R. UDAYAKUMAR, Lindsey H. HALL, Francis G. CELII
  • Patent number: 7572698
    Abstract: A ferroelectric memory device is fabricated while mitigating edge degradation. A bottom electrode is formed over one or more semiconductor layers. A ferroelectric layer is formed over the bottom electrode. A top electrode is formed over the ferroelectric layer. The top electrode, the ferroelectric layer, and the bottom electrode are patterned or etched. A dry clean is performed that mitigates edge degradation. A wet etch/clean is then performed.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: August 11, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Kezhakkedath R. Udayakumar, Lindsey H. Hall, Francis G. Celii, Scott R. Summerfelt
  • Publication number: 20090194801
    Abstract: A method of manufacturing a semiconductor device. The method comprises forming conductive and ferroelectric material layers on a semiconductor substrate. The material layers are patterned to form electrodes and a ferroelectric layer of a ferroelectric capacitor, wherein a conductive residue is generated on sidewalls of the ferroelectric capacitor as a by-product of the patterning. The method also comprises removing the conductive residue using a physical plasma etch clean-up process that includes maintaining a substrate temperature that is greater than about 60° C.
    Type: Application
    Filed: February 4, 2008
    Publication date: August 6, 2009
    Applicant: Texas Instruments Inc.
    Inventors: Francis Gabriel Celii, Robert Kraft, Kezhakkedath R. Udayakumar, Scott Robert Summerfelt, Theodore S. Moise
  • Publication number: 20090057736
    Abstract: One aspect of the invention provides a method of manufacturing a FeRAM semiconductor device having reduce single bit fails. This aspect includes forming an electrical contact within a dielectric layer located over a semiconductor substrate and forming a first barrier layer over the dielectric layer and the electrical contact. The first barrier layer is formed by depositing multiple barrier layers and densifying each of the barrier layers after its deposition. This forms a stack of multiple barrier layers of a same elemental composition. The method further includes forming a second barrier layer over the first barrier layer and forming a lower capacitor electrode, a ferroelectric dielectric layer over the lower capacitor, and forming an upper capacitor electrode over the ferroelectric dielectric layer. A device made by this method is also provided herein.
    Type: Application
    Filed: August 28, 2007
    Publication date: March 5, 2009
    Applicant: Texas Instruments Incorporated
    Inventors: Kezhakkedath R. Udayakumar, Ted S. Moise, Qi-Du Jiang
  • Patent number: 7425512
    Abstract: The present invention provides a method for etching a substrate, a method for forming an integrated circuit, an integrated circuit formed using the method, and an integrated circuit. The method for etching a substrate includes, among other steps, providing a substrate 140 having an aluminum oxide etch stop layer 130 located thereunder, and then etching an opening 150, 155, in the substrate 140 using an etchant comprising carbon oxide, a fluorocarbon, an etch rate modulator, and an inert carrier gas, wherein a flow rate of the carbon oxide is greater than about 80 sccm and the etchant is selective to the aluminum oxide etch stop layer 130. The aluminum oxide etch stop layer may also be used in the back-end of advanced CMOS processes as a via etch stop layer.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: September 16, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Kezhakkedath R. Udayakumar, Ted S. Moise, Scott R. Summerfelt, Martin G. Albrecht, William W. Dostalik, Jr., Francis G. Celii
  • Publication number: 20080081380
    Abstract: A method is provided for fabricating a ferroelectric capacitor structure including a method for etching and cleaning patterned ferroelectric capacitor structures in a semiconductor device. The method comprises etching portions of an upper electrode, etching ferroelectric material, and etching a lower electrode to define a patterned ferroelectric capacitor structure, and etching a portion of a lower electrode diffusion barrier structure. The method further comprises ashing the patterned ferroelectric capacitor structure using a first ashing process, where the ash comprises an oxygen/nitrogen/water-containing ash, performing a wet clean process after the first ashing process, and ashing the patterned ferroelectric capacitor structure using a second ashing process.
    Type: Application
    Filed: February 15, 2007
    Publication date: April 3, 2008
    Inventors: Francis Gabriel Celii, Kezhakkedath R. Udayakumar, Gregory B. Shinn, Theodore S. Moise, Scott R. Summerfelt
  • Publication number: 20070298521
    Abstract: A method of manufacturing a semiconductor device is presented. In one aspect, the method comprises forming conductive and ferroelectric material layers on a semiconductor substrate. The material layers are patterned to form electrodes and a ferroelectric layer of a ferroelectric capacitor, wherein a conductive noble metal-containing polymer is generated on sidewalls of the ferroelectric capacitor. The method also comprises converting the conductive noble metal-containing polymer into a non-conducting metal oxide. Converting includes forming a water-soluble metal salt from the conductive noble metal-containing polymer and reacting the water-soluble metal salt with an acqueous acidic solution to form a metal hydroxide. Converting also includes oxidizing the metal hydroxide to form the non-conducting metal oxide.
    Type: Application
    Filed: January 31, 2007
    Publication date: December 27, 2007
    Applicant: Texas Instruments Incorporated
    Inventors: Yaw S. Obeng, Kezhakkedath R. Udayakumar, Scott Robert Summerfelt, Sanjeev Aggarwal, Francis Gabriel Celii, Lindsey H. Hall, Robert Kraft, Theodore S. Moise
  • Publication number: 20070281422
    Abstract: A ferroelectric memory device is fabricated while mitigating edge degradation. A bottom electrode is formed over one or more semiconductor layers. A ferroelectric layer is formed over the bottom electrode. A top electrode is formed over the ferroelectric layer. The top electrode, the ferroelectric layer, and the bottom electrode are patterned or etched. A dry clean is performed that mitigates edge degradation. A wet etch/clean is then performed.
    Type: Application
    Filed: May 30, 2006
    Publication date: December 6, 2007
    Inventors: Kezhakkedath R. Udayakumar, Lindsey H. Hall, Francis G. Celii, Scott R. Summerfelt
  • Patent number: 7304881
    Abstract: Apparatus and methods are described for a multi-level FeRAM memory device. Using write and read circuits associated with the memory device, multiple data states may be written to and read from the ferroelectric memory device which are associated with a single polarization direction, thereby allowing for a single cell to contain more than one bit of data.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: December 4, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: John Anthony Rodriguez, Kezhakkedath R. Udayakumar
  • Patent number: 7220600
    Abstract: Methods (100) are provided for fabricating a ferroelectric capacitor structure including methods (128) for etching and cleaning patterned ferroelectric capacitor structures in a semiconductor device. The methods comprise etching (140, 200) portions of an upper electrode, etching (141, 201) ferroelectric material, and etching (142, 202) a lower electrode to define a patterned ferroelectric capacitor structure, and etching (143, 206) a portion of a lower electrode diffusion barrier structure. The methods further comprise ashing (144, 203) the patterned ferroelectric capacitor structure using a first ashing process, performing (145, 204) a wet clean process after the first ashing process, and ashing (146, 205) the patterned ferroelectric capacitor structure using a second ashing process directly after the wet clean process at a high temperature in an oxidizing ambient.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: May 22, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Scott R. Summerfelt, Lindsey H. Hall, Kezhakkedath R. Udayakumar, Theodore S. Moise, IV
  • Patent number: 7085150
    Abstract: The present invention facilitates data retention lifetimes for ferroelectric devices by improving switched polarization of ferroelectric memory cells. A ferroelectric memory device comprising ferroelectric memory cells is provided (702). A duration for applying a DC bias to the ferroelectric memory cells is selected (704) according to at least a desired switched polarization improvement. A magnitude for applying the DC bias to the ferroelectric memory cells is also selected (706) according to at least the desired switched polarization improvement. Further, an elevated temperature is selected for applying the DC bias to the ferroelectric memory cells is also selected (708) according to at least the desired switched polarization improvement. Subsequently, the DC bias is applied to the ferroelectric memory cells (710), which activates one or more inactive domains within the ferroelectric memory cells and increases initial polarization values.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: August 1, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: John A. Rodriguez, Kezhakkedath R. Udayakumar