Patents by Inventor Kong-Beng Thei

Kong-Beng Thei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10790387
    Abstract: A semiconductor device is provided. The semiconductor device comprises a substrate, a gate, a first doped region and a second doped region. The gate is over the substrate. The first doped region and the second doped region are in the substrate. The first doped region and the second doped region are of a same conductivity type and separated by the gate. The length of the first doped region is greater than a length of the second doped region in a direction substantially perpendicular to a channel length defined between the first doped region and the second doped region.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: September 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ker-Hsiao Huo, Kong-Beng Thei, Chien-Chih Chou, Yi-Min Chen, Chen-Liang Chu
  • Publication number: 20200286791
    Abstract: A spacer structure and a fabrication method thereof are provided. The method includes the following operations. First and second conductive structures are formed over a substrate. Dielectric layer is formed to cover the first and second conductive structures. Hard mask layer is formed over the dielectric layer. The hard mask layer covers the dielectric layer over the first conductive structure, and the hard mask layer has an opening exposing the dielectric layer over the second conductive structure. The dielectric layer exposed by the hard mask layer is etched to reduce thickness of the dielectric layer. The hard mask layer is removed. The dielectric layer is etched to form first main spacer on sidewall of the first conductive structure and second main spacer on sidewall of the second conductive structure. A first width of the first main spacer is greater than a second width of the second main spacer.
    Type: Application
    Filed: May 22, 2020
    Publication date: September 10, 2020
    Inventors: Alexander KALNITSKY, Kong-Beng THEI
  • Publication number: 20200279935
    Abstract: The present disclosure provides an integrated circuit. The integrated circuit includes a semiconductor substrate; and a passive polysilicon device disposed over the semiconductor substrate. The passive polysilicon device further includes a polysilicon feature; and a plurality of electrodes embedded in the polysilicon feature.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Inventors: Harry-Hak-Lay Chuang, Kong-Beng Thei, Sheng-Chen Chung, Chiung-Han Yeh, Lee-Wee Teo, Yu-Ying Hsu, Bao-Ru Young
  • Publication number: 20200266295
    Abstract: A semiconductor device is provided. The semiconductor device comprises a substrate, a gate, a first doped region and a second doped region. The gate is over the substrate. The first doped region and the second doped region are in the substrate. The first doped region and the second doped region are of a same conductivity type and separated by the gate. The length of the first doped region is greater than a length of the second doped region in a direction substantially perpendicular to a channel length defined between the first doped region and the second doped region.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 20, 2020
    Inventors: Ker-Hsiao HUO, Kong-Beng THEI, Chien-Chih CHOU, Yi-Min CHEN, Chen-Liang CHU
  • Patent number: 10748899
    Abstract: An integrated circuit having an epitaxial source and drain, which reduces gate burnout and increases switching speed so that is suitable for high voltage applications, is provided. The integrated circuit includes a semiconductor substrate having a high voltage N-well (HVNW) and a high voltage P-well (HVPW). The integrated circuit further includes a high-voltage device on the semiconductor substrate. The high-voltage device includes an epitaxial p-type source disposed in the HVNW, an epitaxial p-type drain disposed in the HVPW, and a gate arranged between the epitaxial p-type source and the epitaxial p-type drain on a surface of the semiconductor substrate.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: August 18, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Huan Chen, Chien-Chih Chou, Kong-Beng Thei
  • Publication number: 20200243469
    Abstract: A bump structure with a barrier layer, and a method for manufacturing the bump structure, are provided. In some embodiments, the bump structure comprises a conductive pad, a conductive bump, and a barrier layer. The conductive pad comprises a pad material. The conductive bump overlies the conductive pad, and comprises a lower bump layer and an upper bump layer covering the lower bump layer. The barrier layer is configured to block movement of the pad material from the conductive pad to the upper bump layer along sidewalls of the lower bump layer. In some embodiments, the barrier layer is a spacer lining the sidewalls of the lower bump layer. In other embodiments, the barrier layer is between the barrier layer and the conductive pad, and spaces the sidewalls of the lower bump layer from the conductive pad.
    Type: Application
    Filed: April 17, 2020
    Publication date: July 30, 2020
    Inventors: Yao-Wen Chang, Chern-Yow Hsu, Cheng-Yuan Tsai, Kong-Beng Thei
  • Publication number: 20200243516
    Abstract: A three-dimensional (3D) integrated circuit (IC) is provided. In some embodiments, a first IC die comprises a first bonding structure and a first interconnect structure over a first semiconductor substrate. A second IC die is disposed over the first IC die and comprises a second bonding structure and a second interconnect structure over a second semiconductor substrate. A seal-ring structure extends from the first semiconductor substrate to the second semiconductor substrate. A plurality of through silicon via (TSV) coupling structures is arranged in the peripheral region of the 3D IC along an inner perimeter of the seal-ring structure and closer to the 3D IC than the seal-ring structure. The plurality of TSV coupling structures respectively comprises a TSV disposed in the second semiconductor substrate and electrically coupling to the 3D IC through a stack of TSV wiring layers and inter-wire vias.
    Type: Application
    Filed: March 25, 2020
    Publication date: July 30, 2020
    Inventors: Kong-Beng Thei, Dun-Nian Yaung, Fu-Jier Fan, Hsing-Chih Lin, Hsiao-Chin Tuan, Jen-Cheng Liu, Alexander Kalnitsky, Yi-Sheng Chen
  • Patent number: 10665510
    Abstract: A spacer structure and a fabrication method thereof are provided. The method includes the following operations. First and second conductive structures are formed over a substrate. Dielectric layer is formed to cover the first and second conductive structures. Hard mask layer is formed over the dielectric layer. The hard mask layer covers the dielectric layer over the first conductive structure, and the hard mask layer has an opening exposing the dielectric layer over the second conductive structure. The dielectric layer exposed by the hard mask layer is etched to reduce thickness of the dielectric layer. The hard mask layer is removed. The dielectric layer is etched to form first main spacer on sidewall of the first conductive structure and second main spacer on sidewall of the second conductive structure. A first width of the first main spacer is greater than a second width of the second main spacer.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: May 26, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Alexander Kalnitsky, Kong-Beng Thei
  • Patent number: 10658492
    Abstract: The present disclosure provides an integrated circuit. The integrated circuit includes a semiconductor substrate; and a passive polysilicon device disposed over the semiconductor substrate. The passive polysilicon device further includes a polysilicon feature; and a plurality of electrodes embedded in the polysilicon feature.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: May 19, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Harry-Hak-Lay Chuang, Kong-Beng Thei, Sheng-Chen Chung, Chiung-Han Yeh, Lee-Wee Teo, Yu-Ying Hsu, Bao-Ru Young
  • Patent number: 10658318
    Abstract: A bump structure with a barrier layer, and a method for manufacturing the bump structure, are provided. In some embodiments, the bump structure comprises a conductive pad, a conductive bump, and a barrier layer. The conductive pad comprises a pad material. The conductive bump overlies the conductive pad, and comprises a lower bump layer and an upper bump layer covering the lower bump layer. The barrier layer is configured to block movement of the pad material from the conductive pad to the upper bump layer along sidewalls of the lower bump layer. In some embodiments, the barrier layer is a spacer lining the sidewalls of the lower bump layer. In other embodiments, the barrier layer is between the barrier layer and the conductive pad, and spaces the sidewalls of the lower bump layer from the conductive pad.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: May 19, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yao-Wen Chang, Chern-Yow Hsu, Cheng-Yuan Tsai, Kong-Beng Thei
  • Publication number: 20200144263
    Abstract: The present disclosure relates to an integrated circuit (IC) that includes a boundary region defined between a low voltage region, and a method of formation. In some embodiments, the integrated circuit comprises a first gate boundary dielectric layer disposed over a substrate in the low voltage region. A second gate boundary dielectric layer is disposed over the substrate in the high voltage region having a thickness greater than that of the first boundary dielectric layer. The first boundary dielectric layer meets the second boundary dielectric layer at the boundary region. A first polysilicon component is disposed within the boundary region over the first boundary dielectric layer and the second gate boundary layer. A second polysilicon component is disposed within the boundary region over the first polysilicon component. A hard mask component is disposed over the first polysilicon component and laterally neighbored to the second polysilicon component.
    Type: Application
    Filed: January 2, 2020
    Publication date: May 7, 2020
    Inventors: Yi-Huan Chen, Chien-Chih Chou, Kong-Beng Thei
  • Publication number: 20200135676
    Abstract: In some embodiments, an integrated chip (IC) is provided. The IC includes a metallization structure disposed over a semiconductor substrate, where the metallization structure includes an interconnect structure disposed in an interlayer dielectric (ILD) structure. A passivation layer is disposed over the metallization structure, where an upper surface of the interconnect structure is at least partially disposed between opposite inner sidewalls of the passivation layer. A sidewall spacer is disposed along the opposite inner sidewalls of the passivation layer, where the sidewall spacer has rounded sidewalls. A conductive structure is disposed on the passivation layer, the rounded sidewalls of the sidewall spacer, and the upper surface of the interconnect structure.
    Type: Application
    Filed: May 20, 2019
    Publication date: April 30, 2020
    Inventors: Alexander Kalnitsky, Kong-Beng Thei
  • Publication number: 20200126870
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming a fully silicided (FUSI) gated device, the method including: forming a masking layer onto a gate structure over a substrate, the gate structure comprising a polysilicon layer. Forming a first source region and a first drain region on opposing sides of the gate structure within the substrate, the gate structure is formed before the first source and drain regions. Performing a first removal process to remove a portion of the masking layer and expose an upper surface of the polysilicon layer. The first source and drain regions are formed before the first removal process. Forming a conductive layer directly contacting the upper surface of the polysilicon layer. The conductive layer is formed after the first removal process. Converting the conductive layer and polysilicon layer into a FUSI layer. The FUSI layer is thin and uniform in thickness.
    Type: Application
    Filed: October 24, 2018
    Publication date: April 23, 2020
    Inventors: Yi-Huan Chen, Chien-Chih Chou, Ta-Wei Lin, Hsiao-Chin Tuan, Alexander Kalnitsky, Kong-Beng Thei, Chia-Hong Wu
  • Patent number: 10629592
    Abstract: A three-dimensional (3D) integrated circuit (IC) is provided. In some embodiments, a first IC die comprises a first bonding structure and a first interconnect structure over a first semiconductor substrate. A second IC die is disposed over the first IC die and comprises a second bonding structure and a second interconnect structure over a second semiconductor substrate. A seal-ring structure is in the first and second IC dies and extends from the first semiconductor substrate to the second semiconductor substrate. A plurality of through silicon via (TSV) coupling structures is arranged in the peripheral region of the 3D IC along an inner perimeter of the seal-ring structure. The plurality of TSV coupling structures respectively comprises a through silicon via (TSV) disposed in the second semiconductor substrate and electrically coupling to the 3D IC through a stack of TSV wiring layers and inter-wire vias.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: April 21, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kong-Beng Thei, Dun-Nian Yaung, Fu-Jier Fan, Hsing-Chih Lin, Hsiao-Chin Tuan, Jen-Cheng Liu, Alexander Kalnitsky, Yi-Sheng Chen
  • Publication number: 20200105748
    Abstract: In some embodiments, the present disclosure relates to a semiconductor device comprising a source and drain region arranged within a substrate. A conductive gate is disposed over a doped region of the substrate. A gate dielectric layer is disposed between the source region and the drain region and separates the conductive gate from the doped region. A bottommost surface of the gate dielectric layer is below a topmost surface of the substrate. First and second sidewall spacers are arranged along first and second sides of the conductive gate, respectively. An inner portion of the first sidewall spacer and an inner portion of the second sidewall spacer respectively cover a first and second top surface of the gate dielectric layer. A drain extension region and a source extension region respectively separate the drain region and the source region from the gate dielectric layer.
    Type: Application
    Filed: May 15, 2019
    Publication date: April 2, 2020
    Inventors: Yi-Huan Chen, Chien-Chih Chou, Ta-Wei Lin, Hsiao-Chin Tuan, Alexander Kalnitsky, Kong-Beng Thei, Shi-Chuang Hsiao, Yu-Hong Kuo
  • Publication number: 20200091310
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes a pair of source/drain regions disposed in a semiconductor substrate, where the source/drain regions are laterally spaced. A gate electrode is disposed over the semiconductor substrate between the source/drain regions. Sidewall spacers are disposed over the semiconductor substrate on opposite sides of the gate electrode. A silicide blocking structure is disposed over the sidewalls spacers, where respective sides of the source/drain regions facing the gate electrode are spaced apart from outer sides of the sidewall spacers and are substantially aligned with outer sidewalls of the silicide blocking structure.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Inventors: Kong-Beng Thei, Chien-Chih Chou, Hsiao-Chin Tuan, Yi-Huan Chen, Alexander Kalnitsky
  • Publication number: 20200083343
    Abstract: In some embodiments, an integrated circuit is provided. The integrated circuit may include an inner ring-shaped isolation structure that is disposed in a semiconductor substrate. Further, the inner-ring shaped isolation structure may demarcate a device region. An inner ring-shaped well is disposed in the semiconductor substrate and surrounds the inner ring-shaped isolation structure. A plurality of dummy gates are arranged over the inner ring-shaped well. Moreover, the plurality of dummy gates are arranged within an interlayer dielectric layer.
    Type: Application
    Filed: November 14, 2019
    Publication date: March 12, 2020
    Inventors: Yi-Huan Chen, Chien-Chih Chou, Ta-Wei Lin, Fu-Jier Fan, Kong-Beng Thei, Yi-Sheng Chen, Szu-Hsien Liu
  • Publication number: 20200051975
    Abstract: The present disclosure relates to an integrated circuit (IC) and a method of formation. In some embodiments, a low voltage transistor device is disposed in a low voltage region defined on a substrate. The low voltage transistor device comprises a low voltage gate electrode and a first gate dielectric separating the low voltage gate electrode from the substrate. A high voltage transistor device is disposed in a high voltage region defined on the substrate. The high voltage transistor device comprises a high voltage gate electrode and a high voltage gate dielectric separating the high voltage gate electrode from the substrate. A first interlayer dielectric layer is disposed over the substrate surrounding the low voltage transistor device and the high voltage transistor device. The high voltage gate electrode is disposed on the first interlayer dielectric layer and separated from the substrate by the first interlayer dielectric layer.
    Type: Application
    Filed: October 18, 2019
    Publication date: February 13, 2020
    Inventors: Kong-Beng Thei, Chien-Chih Chou, Fu-Jier Fan, Hsiao-Chin Tuan, Yi-Huan Chen, Alexander Kalnitsky, Yi-Sheng Chen
  • Patent number: 10553583
    Abstract: The present disclosure relates to an integrated circuit (IC) that includes a boundary region defined between a low voltage region, and a method of formation. In some embodiments, the integrated circuit comprises a first gate boundary dielectric layer disposed over a substrate in the low voltage region. A second gate boundary dielectric layer is disposed over the substrate in the high voltage region having a thickness greater than that of the first boundary dielectric layer. The first boundary dielectric layer meets the second boundary dielectric layer at the boundary region. A first polysilicon component is disposed within the boundary region over the first boundary dielectric layer and the second gate boundary layer. A second polysilicon component is disposed within the boundary region over the first polysilicon component. A hard mask component is disposed over the first polysilicon component and laterally neighbored to the second polysilicon component.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: February 4, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Huan Chen, Chien-Chih Chou, Kong-Beng Thei
  • Publication number: 20200035672
    Abstract: A three-dimensional (3D) integrated circuit (IC) and associated forming method are provided. In some embodiments, a second IC die is bonded to a first IC die through a second bonding structure and a first bonding structure at a bonding interface. The bonding encloses a seal-ring structure in a peripheral region of the 3D IC in the first and second IC dies. The seal-ring structure extends from the first semiconductor substrate to the second semiconductor substrate. The bonding forms a plurality of through silicon via (TSV) coupling structures at the peripheral region of the 3D IC along an inner perimeter of the seal-ring structure by electrically and correspondingly connects a first plurality of TSV wiring layers and inter-wire vias and a second plurality of TSV wiring layers and inter-wire vias.
    Type: Application
    Filed: September 21, 2019
    Publication date: January 30, 2020
    Inventors: Kong-Beng Thei, Dun-Nian Yaung, Fu-Jier Fan, Hsing-Chih Lin, Hsiao-Chin Tuan, Jen-Cheng Liu, Alexander Kalnitsky, Yi-Sheng Chen