Patents by Inventor Krystyna W. Semkow

Krystyna W. Semkow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140262458
    Abstract: An interconnect structure that includes a substrate having an electrical component present therein, and a under-bump metallurgy (UBM) stack that is present in contact with a contact pad to the electrical component that is present in the substrate. The UBM stack includes a metallic adhesion layer that is direct contact with the contact pad to the electrical component, a copper (Cu) seed layer that is in direct contact with the metallic adhesion layer, a first nickel (Ni) barrier layer that is present in direct contact with copper (Cu) seed layer, and a layered structure of at least one copper (Cu) conductor layer and at least one second nickel (Ni) barrier layer present on the first nickel (Ni) barrier layer. A solder ball may be present on second nickel (Ni) barrier layer.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: International Business Machines Corporation
    Inventors: Charles L. Arvin, Minhua Lu, Eric D. Perfecto, Krystyna W. Semkow, Thomas A. Wassick
  • Patent number: 8803317
    Abstract: Interconnect structures and methods of fabricating the same are provided. The interconnect structures provide highly reliable copper interconnect structures for improving current carrying capabilities (e.g., current spreading). The structure includes an under bump metallurgy formed in a trench. The under bump metallurgy includes at least: an adhesion layer; a plated barrier layer; and a plated conductive metal layer provided between the adhesion layer and the plated barrier layer. The structure further includes a solder bump formed on the under bump metallurgy.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: August 12, 2014
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Raschid J. Bezama, Harry D. Cox, Timothy H. Daubenspeck, Krystyna W. Semkow, Timothy D. Sullivan
  • Patent number: 8674506
    Abstract: Structures and methods to reduce maximum current density in a solder ball are disclosed. A method includes forming a contact pad in a last wiring level and forming a plurality of wires of the contact pad extending from side edges of the contact pad to respective ones of a plurality of vias. Each one of the plurality of wires has substantially the same electrical resistance.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: March 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Raschid J. Bezama, Timothy H. Daubenspeck, Gary LaFontant, Ian D. Melville, Ekta Misra, George J. Scott, Krystyna W. Semkow, Timothy D. Sullivan, Robin A. Susko, Thomas A. Wassick, Xiaojin Wei, Steven L. Wright
  • Publication number: 20140054778
    Abstract: Disclosed is a semiconductor device wherein an insulation layer has a via opening with an aluminum layer in the via opening and in contact with the last wiring layer of the device. There is a barrier layer on the aluminum layer followed by a copper plug which fills the via opening. Also disclosed is a process for making the semiconductor device.
    Type: Application
    Filed: October 31, 2013
    Publication date: February 27, 2014
    Applicant: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Emily R. Kinser, Ian D. Melville, Krystyna W. Semkow
  • Patent number: 8623194
    Abstract: Disclosed are embodiments of an electroplating system and an associated electroplating method that allow for depositing of metal alloys with a uniform plate thickness and with the means to alter dynamically the alloy composition. Specifically, by using multiple anodes, each with different types of soluble metals, the system and method avoid the need for periodic plating bath replacement and also allow the ratio of metals within the deposited alloy to be selectively varied by applying different voltages to the different metals. The system and method further avoids the uneven current density and potential distribution and, thus, the non-uniform plating thicknesses exhibited by prior art methods by selectively varying the shape and placement of the anodes within the plating bath. Additionally, the system and method allows for fine tuning of the plating thickness by using electrically insulating selectively placed prescribed baffles.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: January 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Raschid J. Bezama, Harry D. Cox, Krystyna W. Semkow
  • Patent number: 8587112
    Abstract: An electroless Cu layer is formed on each side of a packaging substrate containing a core, at least one front metal interconnect layer, and at least one backside metal interconnect layer. A photoresist is applied on both electroless Cu layers and lithographically patterned. First electrolytic Cu portions are formed on exposed surfaces of the electroless Cu layers, followed by formation of electrolytic Ni portions and second electrolytic Cu portions. The electrolytic Ni portions provide enhanced resistance to electromigration, while the second electrolytic Cu portions provide an adhesion layer for a solder mask and serves as an oxidation protection layer. Some of the first electrolytic Cu may be masked by lithographic means to block formation of electrolytic Ni portions and second electrolytic Cu portions thereupon as needed. Optionally, the electrolytic Ni portions may be formed directly on electroless Cu layers.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: November 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Hai P. Longworth, David J. Russell, Krystyna W. Semkow
  • Publication number: 20130284495
    Abstract: In one embodiment of the present invention, inert nano-sized particles having dimensions from 1 nm to 1,000 nm are added into a solder ball. The inert nano-sized particles may comprise metal oxides, metal nitrides, metal carbides, metal borides, etc. The inert nano-sized particles may be a single compound, or may be a metallic material having a coating of a different material. In another embodiment of the present invention, a small quantity of at least one elemental metal that forms stable high melting intermetallic compound with tin is added to a solder ball. The added at least one elemental metal forms precipitates of intermetallic compounds with tin, which are dispersed as fine particles in the solder.
    Type: Application
    Filed: July 1, 2013
    Publication date: October 31, 2013
    Inventors: Charles L. Arvin, Alexandre Blander, Peter J. Brofman, Donald W. Henderson, Gareth G. Hougham, Hsichang Liu, Eric D. Perfecto, Srinivasa S.N. Reddy, Krystyna W. Semkow, Kamalesh K. Srivastava, Brian R. Sundlof, Julien Sylvestre, Renee L. Weisman
  • Patent number: 8551303
    Abstract: Disclosed are embodiments of an electroplating system and an associated electroplating method that allow for depositing of metal alloys with a uniform plate thickness and with the means to alter dynamically the alloy composition. Specifically, by using multiple anodes, each with different types of soluble metals, the system and method avoid the need for periodic plating bath replacement and also allow the ratio of metals within the deposited alloy to be selectively varied by applying different voltages to the different metals. The system and method further avoids the uneven current density and potential distribution and, thus, the non-uniform plating thicknesses exhibited by prior art methods by selectively varying the shape and placement of the anodes within the plating bath. Additionally, the system and method allows for fine tuning of the plating thickness by using electrically insulating selectively placed prescribed baffles.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: October 8, 2013
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Raschid J. Bezama, Harry D. Cox, Krystyna W. Semkow
  • Publication number: 20130252418
    Abstract: Embodiments of the invention include a lead-free solder interconnect structure and methods for making a lead-free interconnect structure. The structure includes a semiconductor substrate having a last metal layer, a copper pedestal attached to the last metal layer, a barrier layer attached to the copper pedestal, a barrier protection layer attached to the barrier layer, and a lead-free solder layer contacting at least one side of the copper pedestal.
    Type: Application
    Filed: May 1, 2013
    Publication date: September 26, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: CHARLES L. ARVIN, KENNETH BIRD, CHARLES C. GOLDSMITH, SUNG K. KANG, MINHUA LU, CLARE J. MCCARTHY, ERIC D. PERFECTO, SRINIVASA S.N. REDDY, KRYSTYNA W. SEMKOW, THOMAS A. WASSICK
  • Publication number: 20130234329
    Abstract: Structures and methods to reduce maximum current density in a solder ball are disclosed. A method includes forming a contact pad in a last wiring level and forming a plurality of wires of the contact pad extending from side edges of the contact pad to respective ones of a plurality of vias. Each one of the plurality of wires has substantially the same electrical resistance.
    Type: Application
    Filed: April 30, 2013
    Publication date: September 12, 2013
    Applicant: Intetnational Business Machines Corporation
    Inventors: Raschid J. BEZAMA, Timothy H. DAUBENSPECK, Gary LaFONTANT, Ian D. MELVILLE, Ekta MISRA, George J. SCOTT, Krystyna W. SEMKOW, Timothy D. SULLIVAN, Robin A. SUSKO, Thomas A. WASSICK, Xiaojin WEI, Steven L. WRIGHT
  • Patent number: 8493746
    Abstract: In one embodiment of the present invention, inert nano-sized particles having dimensions from 1 nm to 1,000 nm are added into a solder ball. The inert nano-sized particles may comprise metal oxides, metal nitrides, metal carbides, metal borides, etc. The inert nano-sized particles may be a single compound, or may be a metallic material having a coating of a different material. In another embodiment of the present invention, a small quantity of at least one elemental metal that forms stable high melting intermetallic compound with tin is added to a solder ball. The added at least one elemental metal forms precipitates of intermetallic compounds with tin, which are dispersed as fine particles in the solder.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Alexandre Blander, Peter J. Brofman, Donald W. Henderson, Gareth G. Hougham, Hsichang Liu, Eric D. Perfecto, Srinivasa S. N. Reddy, Krystyna W. Semkow, Kamalesh K. Srivastava, Brian R. Sundlof, Julien Sylvestre, Renee L. Weisman
  • Patent number: 8446006
    Abstract: Structures and methods to reduce maximum current density in a solder ball are disclosed. A method includes forming a contact pad in a last wiring level and forming a plurality of wires of the contact pad extending from side edges of the contact pad to respective ones of a plurality of vias. Each one of the plurality of wires has substantially the same electrical resistance.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: May 21, 2013
    Assignee: International Business Machines Corporation
    Inventors: Raschid J. Bezama, Timothy H. Daubenspeck, Gary LaFontant, Ian D. Melville, Ekta Misra, George J. Scott, Krystyna W. Semkow, Timothy D. Sullivan, Robin A. Susko, Thomas A. Wassick, Xiaojin Wei, Steven L. Wright
  • Publication number: 20120325667
    Abstract: Disclosed are embodiments of an electroplating system and an associated electroplating method that allow for depositing of metal alloys with a uniform plate thickness and with the means to alter dynamically the alloy composition. Specifically, by using multiple anodes, each with different types of soluble metals, the system and method avoid the need for periodic plating bath replacement and also allow the ratio of metals within the deposited alloy to be selectively varied by applying different voltages to the different metals. The system and method further avoids the uneven current density and potential distribution and, thus, the non-uniform plating thicknesses exhibited by prior art methods by selectively varying the shape and placement of the anodes within the plating bath. Additionally, the system and method allows for fine tuning of the plating thickness by using electrically insulating selectively placed prescribed baffles.
    Type: Application
    Filed: September 6, 2012
    Publication date: December 27, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles L. Arvin, Raschid J. Bezama, Harry D. Cox, Krystyna W. Semkow
  • Publication number: 20120328789
    Abstract: A method of producing a metal-graphite foam composite, and particularly, the utilization thereof in connection with a cooling apparatus. Also provided is a cooling apparatus, such as a liquid cooler or alternatively, a heat sink for electronic heat-generating components, which employ the metal-graphite foam composite.
    Type: Application
    Filed: August 31, 2012
    Publication date: December 27, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Minhua Lu, Lawrence S. Mok, Krystyna W. Semkow
  • Publication number: 20120312447
    Abstract: A multi-layer pillar and method of fabricating the same is provided. The multi-layer pillar is used as an interconnect between a chip and substrate. The pillar has at least one low strength, high ductility deformation region configured to absorb force imposed during chip assembly and thermal excursions.
    Type: Application
    Filed: August 21, 2012
    Publication date: December 13, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Virendra R. JADHAV, Krystyna W. SEMKOW, Kamalesh K. SRIVASTAVA, Brian R. SUNDLOF
  • Patent number: 8298929
    Abstract: Semiconductor structures, methods of manufacture and design structures are provided. The structure includes at least one offset crescent shaped solder via formed in contact with an underlying metal pad of a chip. The at least one offset crescent shaped via is offset with respect to at least one of the underlying metal pad and an underlying metal layer in direct electrical contact with an interconnect of the chip which is in electrical contact with the underlying metal layer.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Gary Lafontant, Ekta Misra, David L. Questad, George J. Scott, Krystyna W. Semkow, Timothy D. Sullivan, Thomas A. Wassick, Steven L. Wright
  • Patent number: 8293587
    Abstract: A multi-layer pillar and method of fabricating the same is provided. The multi-layer pillar is used as an interconnect between a chip and substrate. The pillar has at least one low strength, high ductility deformation region configured to absorb force imposed during chip assembly and thermal excursions.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: October 23, 2012
    Assignee: International Business Machines Corporation
    Inventors: Virendra R Jadhav, Krystyna W Semkow, Kamalesh K Srivastava, Brian R Sundlof
  • Patent number: 8268716
    Abstract: A method of coupling an integrated circuit to a substrate includes providing the substrate, forming a contact pad in the substrate, contacting the contact pad with a solder ball, and repeatedly exposing the solder ball to a thermal process to cause intermetallics based on a metal in the contact pad to be formed in the thermal ball.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: September 18, 2012
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Valerie Oberson, Srinivasa N. Reddy, Krystyna W. Semkow, Richard A. Shelleman, Kamalesh K. Srivistava
  • Publication number: 20120198692
    Abstract: An electroless Cu layer is formed on each side of a packaging substrate containing a core, at least one front metal interconnect layer, and at least one backside metal interconnect layer. A photoresist is applied on both electroless Cu layers and lithographically patterned. First electrolytic Cu portions are formed on exposed surfaces of the electroless Cu layers, followed by formation of electrolytic Ni portions and second electrolytic Cu portions. The electrolytic Ni portions provide enhanced resistance to electromigration, while the second electrolytic Cu portions provide an adhesion layer for a solder mask and serves as an oxidation protection layer. Some of the first electrolytic Cu may be masked by lithographic means to block formation of electrolytic Ni portions and second electrolytic Cu portions thereupon as needed. Optionally, the electrolytic Ni portions may be formed directly on electroless Cu layers.
    Type: Application
    Filed: April 23, 2012
    Publication date: August 9, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles L. Arvin, Hai P. Longworth, David J. Russell, Krystyna W. Semkow
  • Patent number: 8232655
    Abstract: An electroless Cu layer is formed on each side of a packaging substrate containing a core, at least one front metal interconnect layer, and at least one backside metal interconnect layer. A photoresist is applied on both electroless Cu layers and lithographically patterned. First electrolytic Cu portions are formed on exposed surfaces of the electroless Cu layers, followed by formation of electrolytic Ni portions and second electrolytic Cu portions. The electrolytic Ni portions provide enhanced resistance to electromigration, while the second electrolytic Cu portions provide an adhesion layer for a solder mask and serves as an oxidation protection layer. Some of the first electrolytic Cu may be masked by lithographic means to block formation of electrolytic Ni portions and second electrolytic Cu portions thereupon as needed. Optionally, the electrolytic Ni portions may be formed directly on electroless Cu layers.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Hai P. Longworth, David J. Russell, Krystyna W. Semkow