Patents by Inventor Kun-Min Chen

Kun-Min Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11309308
    Abstract: An electrostatic discharge protection circuit includes an internal circuit, a pad, a first high voltage transistor, an electrostatic protection element and a control circuit. A first terminal of the first high voltage transistor is coupled to the pad, a second terminal of the first high voltage transistor is coupled to the internal circuit and includes a control terminal. The electrostatic protection element has one end coupled to the first end of the first high voltage transistor and the other end grounded. The control circuit is coupled between the control terminal of the first high voltage transistor and the ground terminal. The control circuit is configured to control the first high voltage transistor to turn off when the pad receives an electrostatic voltage.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: April 19, 2022
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Kun-Min Chen, Chien-Lun Chu
  • Patent number: 11258381
    Abstract: A motor driving circuit for a single phase motor and a motor driving method for the same are provided. The motor driving circuit includes a motor driver, a Hall sensor, a Hall commutation detection circuit, a period recording circuit, a motor current detection circuit, a cut-off angle adjustment circuit, an angle calculation circuit and a control circuit. The motor current detection circuit detects a motor current value at a commutation point after the single phase motor operates normally. The cut-off angle adjustment circuit generates a cut-off angle adjustment signal indicating a cut-off adjustment angle according to the motor current value when the single phase motor passes the commutation point. The control circuit processes the commutation signal and the cut-off signal generated by the angle calculation circuit to generate a control signal group to control the motor driver to generate an output signal group to drive the motor.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: February 22, 2022
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Kun-Min Chen, Ching-Shan Lu
  • Patent number: 11205984
    Abstract: A motor driving circuit and a motor driving method are provided. The motor driving circuit is used to drive a motor, and includes a starting unit, a driving unit, a floating phase selecting unit, a hysteresis comparator, an integration circuit, a first comparator and a control circuit. The control circuit controls the floating phase selecting unit to select a floating phase to output a floating phase voltage signal, and controls, in response to an initial starting signal, the integration circuit to use a first integration time, and determine whether the motor has been successfully started. In response to a successful start, the control circuit controls the integration circuit to use a second integration time, and controls the starting unit to be switched to an operation mode to control the driving unit to drive the motor. The first integration time is greater than the second integration time.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: December 21, 2021
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Kun-Min Chen, Yi-Cheng Liu
  • Patent number: 11088641
    Abstract: A motor driving device having a lock protection mode includes a rotation speed detecting unit, an operating unit, a driving unit, a floating point selecting unit, a BEMF detecting unit, a control unit, and a lock protection unit. The operating unit enters an operating mode after a motor is stably operated, and generates an operating signal having phases according to a commutation sequence, and the driving unit drives the motor. The BEMF detecting unit detects a BEMF of a first floating phase to generate a detection result. The control unit outputs a commutation signal to cause the driving unit to drive the motor. When the rotation speed detecting unit determines that a rotation speed of the motor exceeds a predetermined rotation speed, the rotation speed detecting unit outputs a switching signal to the lock protection unit to enter the lock protection mode.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: August 10, 2021
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Kun-Min Chen
  • Patent number: 11088639
    Abstract: A motor driving device includes a first hysteresis comparator, a second hysteresis comparator, a logic circuit, a control unit, and an inverter circuit. The logic circuit receives a start signal or a start completion signal to output the first output signal as a commutation signal according to the start signal, or to output the second output signal as the commutation signal according to the start completion signal, clamps the second output signal by the first output signal, stops outputting the commutation signal after the potential state of the commutation signal is changed, and unclamps the second output signal with the first output signal and outputs the commutation signal in response to a difference voltage between the first input signal and the second input signal being greater than a positive value of the first hysteresis voltage or less than a negative value of the first hysteresis voltage.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: August 10, 2021
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Kun-Min Chen, Ching-Shan Lu, Shih-Hai Chien
  • Patent number: 11038446
    Abstract: A motor driving circuit includes a plurality of pins, a Hall sensor, a Hall signal processing portion and a driving processing circuit. The test-starting pin for receiving the test-starting signal and the test signal output pin for outputting the test signal are shared with at least one pin of the plurality of pins. The Hall sensor senses the change in the magnetic field of the motor to generate a Hall signal. The Hall signal processing unit amplifies the generated Hall signal, and the driving processing circuit drives the motor based on an output signal of the Hall signal processing unit and a control signal input from one of the plurality of pins. In a test mode, the output signal is output from the test signal output pin as a test signal. In a normal mode, at least one pin is used for normal operation.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: June 15, 2021
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Kun-Min Chen, Shen-Min Lo
  • Patent number: 10978974
    Abstract: A motor starting device includes a starting unit, a driving unit, a floating point selecting unit, a back electromotive force (BEMF) detecting unit and a control unit. In a starting mode, the starting unit generates an initial starting signal having a plurality of phases according to a commutation sequence, the driving unit drives the motor with a first phase in the initial starting signal, the floating point selecting unit selects a floating phase of the motor that is not turned on according to the driving condition of the driving unit, the BEMF detecting unit detects whether the BEMF of the floating phase has a first voltage level or a second voltage level to generate a detection result, and the control unit outputs a phase changing signal to the driving unit according to the detection result.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: April 13, 2021
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventor: Kun-Min Chen
  • Patent number: 10972024
    Abstract: A motor driving device includes a PWM signal generating unit, a control unit, a driving unit, a floating point selecting unit and a BEMF detecting unit. The PWM signal generating unit generates an input PWM signal having a duty cycle according to a rotation speed command. The control unit generates a driving signal having multiple phases and an output PWM signal. The floating point selection unit selects a floating phase of the motor that is not turned off, and the BEMF detecting unit receives detects the BEMF of the floating phase during ON times or OFF times of the output PWM signal, so as to output a commutation signal in response to zero crossing events occurring in the BEMF. The control unit controls the BEMF detecting unit to detect the BEMF of the floating phase under the ON times or the OFF times of the output PWM signal.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: April 6, 2021
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Kun-Min Chen, Yi-Cheng Liu
  • Publication number: 20210091688
    Abstract: A motor driving device includes a PWM signal generating unit, a control unit, a driving unit, a floating point selecting unit and a BEMF detecting unit. The PWM signal generating unit generates an input PWM signal having a duty cycle according to a rotation speed command. The control unit generates a driving signal having multiple phases and an output PWM signal. The floating point selection unit selects a floating phase of the motor that is not turned off, and the BEMF detecting unit receives detects the BEMF of the floating phase during ON times or OFF times of the output PWM signal, so as to output a commutation signal in response to zero crossing events occurring in the BEMF. The control unit controls the BEMF detecting unit to detect the BEMF of the floating phase under the ON times or the OFF times of the output PWM signal.
    Type: Application
    Filed: December 19, 2019
    Publication date: March 25, 2021
    Inventors: KUN-MIN CHEN, YI-CHENG LIU
  • Publication number: 20210075346
    Abstract: A motor driving device includes a first hysteresis comparator, a second hysteresis comparator, a logic circuit, a control unit, and an inverter circuit. The logic circuit receives a start signal or a start completion signal to output the first output signal as a commutation signal according to the start signal, or to output the second output signal as the commutation signal according to the start completion signal, clamps the second output signal by the first output signal, stops outputting the commutation signal after the potential state of the commutation signal is changed, and unclamps the second output signal with the first output signal and outputs the commutation signal in response to a difference voltage between the first input signal and the second input signal being greater than a positive value of the first hysteresis voltage or less than a negative value of the first hysteresis voltage.
    Type: Application
    Filed: December 19, 2019
    Publication date: March 11, 2021
    Inventors: KUN-MIN CHEN, Ching-Shan Lu, Shih-Hai Chien
  • Publication number: 20210075348
    Abstract: A motor driving device having a lock protection mode includes a rotation speed detecting unit, an operating unit, a driving unit, a floating point selecting unit, a BEMF detecting unit, a control unit, and a lock protection unit. The operating unit enters an operating mode after a motor is stably operated, and generates an operating signal having phases according to a commutation sequence, and the driving unit drives the motor. The BEMF detecting unit detects a BEMF of a first floating phase to generate a detection result. The control unit outputs a commutation signal to cause the driving unit to drive the motor. When the rotation speed detecting unit determines that a rotation speed of the motor exceeds a predetermined rotation speed, the rotation speed detecting unit outputs a switching signal to the lock protection unit to enter the lock protection mode.
    Type: Application
    Filed: December 19, 2019
    Publication date: March 11, 2021
    Inventor: KUN-MIN CHEN
  • Publication number: 20210050806
    Abstract: A motor starting device includes a starting unit, a driving unit, a floating point selecting unit, a back electromotive force (BEMF) detecting unit and a control unit. In a starting mode, the starting unit generates an initial starting signal having a plurality of phases according to a commutation sequence, the driving unit drives the motor with a first phase in the initial starting signal, the floating point selecting unit selects a floating phase of the motor that is not turned on according to the driving condition of the driving unit, the BEMF detecting unit detects whether the BEMF of the floating phase has a first voltage level or a second voltage level to generate a detection result, and the control unit outputs a phase changing signal to the driving unit according to the detection result.
    Type: Application
    Filed: November 19, 2019
    Publication date: February 18, 2021
    Inventor: KUN-MIN CHEN
  • Publication number: 20190379310
    Abstract: A motor driving circuit includes a driving-stage circuit, a system control circuit, a signal generation circuit and a plurality of zero-crossing detectors. The driving-stage circuit includes a plurality of inverters. The system control circuit provides a duty cycle signal. The signal generation circuit generates a plurality of pulse width modulation signals according to the duty cycle signal to control the turning on and the turning off of an upper-side transistor and a lower-side transistor of each inverter such that the driving current is provided to drive the motor. The zero-crossing detector detects a current flowing through a node between the upper-side transistor and the lower-side transistor of each inverter and accordingly generates a current sensing signal. The signal generation circuit adjusts the pulse width modulation signals according to the current sensing signals.
    Type: Application
    Filed: September 10, 2018
    Publication date: December 12, 2019
    Inventors: CHIA-TAI YANG, KUN-MIN CHEN
  • Publication number: 20190371788
    Abstract: An electrostatic discharge protection circuit includes an internal circuit, a pad, a first high voltage transistor, an electrostatic protection element and a control circuit. A first terminal of the first high voltage transistor is coupled to the pad, a second terminal of the first high voltage transistor is coupled to the internal circuit and includes a control terminal. The electrostatic protection element has one end coupled to the first end of the first high voltage transistor and the other end grounded. The control circuit is coupled between the control terminal of the first high voltage transistor and the ground terminal. The control circuit is configured to control the first high voltage transistor to turn off when the pad receives an electrostatic voltage.
    Type: Application
    Filed: August 22, 2018
    Publication date: December 5, 2019
    Inventors: KUN-MIN CHEN, CHIEN-LUN CHU
  • Patent number: 10495096
    Abstract: A heat dissipation system includes a control module, a first fan module and a second fan module. The first fan module is electrically connected to the control module to provide a speed signal to the control module. The second fan module is electrically connected to the control module and the first fan module. The control module provides at least one control signal to control the rotation of the first fan module and the second fan module respectively. The first fan module transmits a first trigger signal to the second fan module, and the second fan module starts to rotate or stops rotating together with the first fan module according to the first trigger signal.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: December 3, 2019
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Kun-Min Chen, Ching-Feng Lai, Chien-Sheng Wang
  • Publication number: 20190356250
    Abstract: A motor driving circuit includes a plurality of pins, a Hall sensor, a Hall signal processing portion and a driving processing circuit. The test-starting pin for receiving the test-starting signal and the test signal output pin for outputting the test signal are shared with at least one pin of the plurality of pins. The Hall sensor senses the change in the magnetic field of the motor to generate a Hall signal. The Hall signal processing unit amplifies the generated Hall signal, and the driving processing circuit drives the motor based on an output signal of the Hall signal processing unit and a control signal input from one of the plurality of pins. In a test mode, the output signal is output from the test signal output pin as a test signal. In a normal mode, at least one pin is used for normal operation.
    Type: Application
    Filed: August 22, 2018
    Publication date: November 21, 2019
    Inventors: Kun-Min Chen, Shen-Min Lo
  • Patent number: 10439524
    Abstract: A motor driving circuit includes a Hall sensor, an offset detecting circuit, a driving circuit and a back EMF zero point detector. The Hall sensor generates a Hall signal group, the offset detecting circuit detects the first phase changing point of the Hall signal group, and the driving circuit generates the initial phase changing signal in the pre-operation mode according to the Hall signal group. In the correction mode, the driving circuit stops outputting the initial phase changing signal, the back EMF zero detector detects the back EMF zero point, and outputs the back EMF zero point signal. The offset detecting circuit detects a phase difference between the first phase changing point and back EMF zero point, and determines a difference value between the phase difference and a predetermined phase difference. Then, the phase of the Hall signal group is adjusted according to the difference value.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: October 8, 2019
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Chia-Tai Yang, Kun-Min Chen
  • Patent number: 10348228
    Abstract: A motor driving circuit includes a Hall sensor, a driving circuit, a phase adjuster, and a phase current zero point detector. The Hall sensor detects the rotor position of the motor and generates the Hall signal group. The driving circuit generates the initial phase changing signal according to the Hall signal group. The phase current zero point detector receives and detects the phase current zero point of the phase current signal group, and generates and outputs the phase current zero point signal. The phase adjuster determines a phase difference between the phase current zero point and the intermediate point between the first phase changing point and the second phase changing point, and adjusts the initial phase changing signal according to the phase difference to generate and output the adjusted phase changing signal to drive the motor.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: July 9, 2019
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Chia-Tai Yang, Kun-Min Chen
  • Patent number: 10333438
    Abstract: The present disclosure provides a motor driving circuit, which includes a position detecting circuit, a drive processing circuit, an adjusting voltage source, a parameter reading unit and a timing unit. The timing unit generates a timing signal, and the parameter reading unit processes the timing signal to obtain a consecutive first time interval and a second time interval. The parameter reading unit reads a first functional parameter voltage of a functional parameter pin in the first time interval and generates first functional parameter data to be written into a first register, and reads a second functional parameter voltage of a functional parameter pin in the second time interval and generates second functional parameter data to be written into a second register. The drive processing circuit drives a motor according to the first functional parameter data and the second functional parameter data.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: June 25, 2019
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Kun-Min Chen, Ching-Feng Lai
  • Patent number: 10284124
    Abstract: A motor driving circuit for receiving a control signal to output at least one output current for driving a motor is provided. The motor driving circuit includes an input module, a gain module, an output module, a first slew rate limiting module, and a second slew rate limiting module. The first slew rate limiting module has a first limiting parameter. The second slew rate includes a second limiting parameter. An output current is outputted by the output terminal. When a rising slew rate of the output current is less than a first slew rate value, the first slew rate limiting module does not operate. When the rising slew rate of the output current is greater than the first slew rate value, the motor driving circuit limits the rising slew rate of the output current based on the first limiting parameter of the first slew rate limiting module.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: May 7, 2019
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Kun-Min Chen, I-Lin Chiu