Patents by Inventor Kuo-Ju Chen

Kuo-Ju Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210066500
    Abstract: A device includes a fin extending from a semiconductor substrate; a gate stack over the fin; a first spacer on a sidewall of the gate stack; a source/drain region in the fin adjacent the first spacer; an inter-layer dielectric layer (ILD) extending over the gate stack, the first spacer, and the source/drain region, the ILD having a first portion and a second portion, wherein the second portion of the ILD is closer to the gate stack than the first portion of the ILD; a contact plug extending through the ILD and contacting the source/drain region; a second spacer on a sidewall of the contact plug; and an air gap between the first spacer and the second spacer, wherein the first portion of the ILD extends across the air gap and physically contacts the second spacer, wherein the first portion of the ILD seals the air gap.
    Type: Application
    Filed: May 21, 2020
    Publication date: March 4, 2021
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Kai-Hsuan Lee, I-Hsieh Wong, Cheng-Yu Yang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo, Syun-Ming Jang, Meng-Han Chou
  • Publication number: 20200402853
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a gate structure over a fin structure. The semiconductor structure also includes a source/drain structure in the fin structure and adjacent to the gate structure. The semiconductor structure also includes a first contact plug over the source/drain structure. The semiconductor structure also includes a first via plug over the first contact plug. The semiconductor structure also includes a dielectric layer surrounding the first via plug. The first via plug includes a first group IV element and the dielectric layer includes the first group IV element and a second group IV element.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 24, 2020
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung-Po HSIEH, Su-Hao LIU, Hong-Chih LIU, Jing-Huei HUANG, Jie-Huang HUANG, Lun-Kuang TAN, Huicheng CHANG, Liang-Yin CHEN, Kuo-Ju CHEN
  • Patent number: 10868178
    Abstract: Embodiments disclosed herein relate generally to forming an ultra-shallow junction having high dopant concentration and low contact resistance in a p-type source/drain region. In an embodiment, a method includes forming a source/drain region in an active area on a substrate, the source/drain region comprising germanium, performing an ion implantation process using gallium (Ga) to form an amorphous region in the source/drain region, performing an ion implantation process using a dopant into the amorphous region, and subjecting the amorphous region to a thermal process.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Chun-Hung Wu, Chia-Cheng Chen, Liang-Yin Chen, Huicheng Chang, Ying-Lang Wang
  • Publication number: 20200279944
    Abstract: Embodiments disclosed herein relate to using an implantation process and a melting anneal process performed on a nanosecond scale to achieve a high surface concentration (surface pile up) dopant profile and a retrograde dopant profile simultaneously. In an embodiment, a method includes forming a source/drain structure in an active area on a substrate, the source/drain structure including a first region comprising germanium, implanting a first dopant into the first region of the source/drain structure to form an amorphous region in at least the first region of the source/drain structure, implanting a second dopant into the amorphous region containing the first dopant, and heating the source/drain structure to liquidize and convert at least the amorphous region into a crystalline region, the crystalline region containing the first dopant and the second dopant.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Wen-Yen Chen, Ying-Lang Wang, Liang-Yin Chen, Li-Ting Wang, Huicheng Chang
  • Patent number: 10763168
    Abstract: A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a gate structure, a source/drain structure, a first contact plug and a first via plug. The gate structure is positioned over a fin structure. The source/drain structure is positioned in the fin structure and adjacent to the gate structure. The first contact plug is positioned over the source/drain structure. The first via plug is positioned over the first contact plug. The first via plug includes a first group IV element.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: September 1, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tung-Po Hsieh, Su-Hao Liu, Hong-Chih Liu, Jing-Huei Huang, Jie-Huang Huang, Lun-Kuang Tan, Huicheng Chang, Liang-Yin Chen, Kuo-Ju Chen
  • Publication number: 20200266299
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming an epitaxial structure over a semiconductor substrate. The method also includes generating and applying plasma on an entire exposed surface of the epitaxial structure to form a modified region in the epitaxial structure. The plasma is directly applied on the source/drain structure without being filtered out, and the plasma includes ions with different charges. The method further includes forming a metal layer on the modified region and heating the metal layer and the modified region to form a metal-semiconductor compound region.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 20, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Cheng CHEN, Su-Hao LIU, Kuo-Ju CHEN, Liang-Yin CHEN
  • Patent number: 10658510
    Abstract: Embodiments disclosed herein relate to using an implantation process and a melting anneal process performed on a nanosecond scale to achieve a high surface concentration (surface pile up) dopant profile and a retrograde dopant profile simultaneously. In an embodiment, a method includes forming a source/drain structure in an active area on a substrate, the source/drain structure including a first region comprising germanium, implanting a first dopant into the first region of the source/drain structure to form an amorphous region in at least the first region of the source/drain structure, implanting a second dopant into the amorphous region containing the first dopant, and heating the source/drain structure to liquidize and convert at least the amorphous region into a crystalline region, the crystalline region containing the first dopant and the second dopant.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: May 19, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Wen-Yen Chen, Ying-Lang Wang, Liang-Yin Chen, Li-Ting Wang, Huicheng Chang
  • Patent number: 10658508
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The method includes forming a fin structure over a semiconductor substrate and forming a gate stack over the fin structure. The method also includes forming an epitaxial structure over the fin structure. The method further includes forming a dielectric layer over the epitaxial structure and forming an opening in the dielectric layer to expose the epitaxial structure. In addition, the method includes forming a modified region in the epitaxial structure. The modified region has lower crystallinity than an inner portion of the epitaxial structure and extends along an entirety of an exposed surface of the epitaxial structure. The method also includes forming a semiconductor-metal compound region on the epitaxial structure. All or some of the modified region is transformed into the semiconductor-metal compound region.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: May 19, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Cheng Chen, Su-Hao Liu, Kuo-Ju Chen, Liang-Yin Chen
  • Patent number: 10643892
    Abstract: The present disclosure provides methods for forming conductive features in a dielectric layer without using adhesion layers or barrier layers and devices formed thereby. In some embodiments, a structure comprising a dielectric layer over a substrate, and a conductive feature disposed through the dielectric layer. The dielectric layer has a lower surface near the substrate and a top surface distal from the substrate. The conductive feature is in direct contact with the dielectric layer, and the dielectric layer comprises an implant species. A concentration of the implant species in the dielectric layer has a peak concentration proximate the top surface of the dielectric layer, and the concentration of the implant species decreases from the peak concentration in a direction towards the lower surface of the dielectric layer.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: May 5, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Chieh Wu, Tang-Kuei Chang, Kuo-Hsiu Wei, Kei-Wei Chen, Ying-Lang Wang, Su-Hao Liu, Kuo-Ju Chen, Liang-Yin Chen, Huicheng Chang, Ting-Kui Chang, Chia Hsuan Lee
  • Publication number: 20200119195
    Abstract: Embodiments disclosed herein relate generally to forming an ultra-shallow junction having high dopant concentration and low contact resistance in a p-type source/drain region. In an embodiment, a method includes forming a source/drain region in an active area on a substrate, the source/drain region comprising germanium, performing an ion implantation process using gallium (Ga) to form an amorphous region in the source/drain region, performing an ion implantation process using a dopant into the amorphous region, and subjecting the amorphous region to a thermal process.
    Type: Application
    Filed: December 11, 2019
    Publication date: April 16, 2020
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Chun-Hung Wu, Chia-Cheng Chen, Liang-Yin Chen, Huicheng Chang, Ying-Lang Wang
  • Publication number: 20200006545
    Abstract: Embodiments disclosed herein relate to using an implantation process and a melting anneal process performed on a nanosecond scale to achieve a high surface concentration (surface pile up) dopant profile and a retrograde dopant profile simultaneously. In an embodiment, a method includes forming a source/drain structure in an active area on a substrate, the source/drain structure including a first region comprising germanium, implanting a first dopant into the first region of the source/drain structure to form an amorphous region in at least the first region of the source/drain structure, implanting a second dopant into the amorphous region containing the first dopant, and heating the source/drain structure to liquidize and convert at least the amorphous region into a crystalline region, the crystalline region containing the first dopant and the second dopant.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 2, 2020
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Wen-Yen Chen, Ying-Lang Wang, Liang-Yin Chen, Li-Ting Wang, Huicheng Chang
  • Publication number: 20190385909
    Abstract: The present disclosure provides methods for forming conductive features in a dielectric layer without using adhesion layers or barrier layers and devices formed thereby. In some embodiments, a structure comprising a dielectric layer over a substrate, and a conductive feature disposed through the dielectric layer. The dielectric layer has a lower surface near the substrate and a top surface distal from the substrate. The conductive feature is in direct contact with the dielectric layer, and the dielectric layer comprises an implant species. A concentration of the implant species in the dielectric layer has a peak concentration proximate the top surface of the dielectric layer, and the concentration of the implant species decreases from the peak concentration in a direction towards the lower surface of the dielectric layer.
    Type: Application
    Filed: August 30, 2019
    Publication date: December 19, 2019
    Inventors: Li-Chieh Wu, Tang-Kuei Chang, Kuo-Hsiu Wei, Kei-Wei Chen, Ying-Lang Wang, Su-Hao Liu, Kuo-Ju Chen, Liang-Yin Chen, Huicheng Chang, Ting-Kui Chang, Chia Hsuan Lee
  • Patent number: 10510891
    Abstract: Embodiments disclosed herein relate generally to forming an ultra-shallow junction having high dopant concentration and low contact resistance in a p-type source/drain region. In an embodiment, a method includes forming a source/drain region in an active area on a substrate, the source/drain region comprising germanium, performing an ion implantation process using gallium (Ga) to form an amorphous region in the source/drain region, performing an ion implantation process using a dopant into the amorphous region, and subjecting the amorphous region to a thermal process.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Chun-Hung Wu, Chia-Cheng Chen, Liang-Yin Chen, Huicheng Chang, Ying-Lang Wang
  • Publication number: 20190378928
    Abstract: Embodiments disclosed herein relate generally to forming an ultra-shallow junction having high dopant concentration and low contact resistance in a p-type source/drain region. In an embodiment, a method includes forming a source/drain region in an active area on a substrate, the source/drain region comprising germanium, performing an ion implantation process using gallium (Ga) to form an amorphous region in the source/drain region, performing an ion implantation process using a dopant into the amorphous region, and subjecting the amorphous region to a thermal process.
    Type: Application
    Filed: July 8, 2019
    Publication date: December 12, 2019
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Chun-Hung Wu, Chia-Cheng Chen, Liang-Yin Chen, Huicheng Chang, Ying-Lang Wang
  • Publication number: 20190371664
    Abstract: The present disclosure provides methods for forming conductive features in a dielectric layer without using adhesion layers or barrier layers and devices formed thereby. In some embodiments, a structure comprising a dielectric layer over a substrate, and a conductive feature disposed through the dielectric layer. The dielectric layer has a lower surface near the substrate and a top surface distal from the substrate. The conductive feature is in direct contact with the dielectric layer, and the dielectric layer comprises an implant species. A concentration of the implant species in the dielectric layer has a peak concentration proximate the top surface of the dielectric layer, and the concentration of the implant species decreases from the peak concentration in a direction towards the lower surface of the dielectric layer.
    Type: Application
    Filed: May 31, 2018
    Publication date: December 5, 2019
    Inventors: Li-Chieh Wu, Tang-Kuei Chang, Kuo-Hsiu Wei, Kei-Wei Chen, Ying-Lang Wang, Su-Hao Liu, Kuo-Ju Chen, Liang-Yin Chen, Huicheng Chang, Ting-Kui Chang, Chia Hsuan Lee
  • Publication number: 20190305107
    Abstract: A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a gate structure, a source/drain structure, a dielectric layer, a contact plug. The gate structure is positioned over a fin structure. The source/drain structure is positioned in the fin structure and adjacent to the gate structure. The dielectric layer is positioned over the gate structure and the source/drain structure. The contact plug is positioned passing through the dielectric layer. The contact plug includes a first metal compound including one of group III elements, group IV elements, group V elements or a combination thereof.
    Type: Application
    Filed: March 29, 2018
    Publication date: October 3, 2019
    Inventors: Kuo-Ju CHEN, Su-Hao LIU, Chun-Hao KUNG, Liang-Yin CHEN, Huicheng CHANG, Kei-Wei CHEN, Hui-Chi HUANG, Kao-Feng LIAO, Chih-Hung CHEN, Jie-Huang HUANG, Lun-Kuang TAN, Wei-Ming YOU
  • Publication number: 20190288068
    Abstract: The present disclosure relates generally to doping for conductive features in a semiconductor device. In an example, a structure includes an active region of a transistor. The active region includes a source/drain region, and the source/drain region is defined at least in part by a first dopant having a first dopant concentration. The source/drain region further includes a second dopant with a concentration profile having a consistent concentration from a surface of the source/drain region into a depth of the source/drain region. The consistent concentration is greater than the first dopant concentration. The structure further includes a conductive feature contacting the source/drain region at the surface of the source/drain region.
    Type: Application
    Filed: June 6, 2019
    Publication date: September 19, 2019
    Inventors: Su-Hao Liu, Huicheng Chang, Chia-Cheng Chen, Liang-Yin Chen, Kuo-Ju Chen, Chun-Hung Wu, Chang-Maio Liu, Huai-Tei Yang, Lun-Kuang Tan, Wei-Ming You
  • Patent number: 10347720
    Abstract: The present disclosure relates generally to doping for conductive features in a semiconductor device. In an example, a structure includes an active region of a transistor. The active region includes a source/drain region, and the source/drain region is defined at least in part by a first dopant having a first dopant concentration. The source/drain region further includes a second dopant with a concentration profile having a consistent concentration from a surface of the source/drain region into a depth of the source/drain region. The consistent concentration is greater than the first dopant concentration. The structure further includes a conductive feature contacting the source/drain region at the surface of the source/drain region.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: July 9, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Su-Hao Liu, Huicheng Chang, Chia-Cheng Chen, Liang-Yin Chen, Kuo-Ju Chen, Chun-Hung Wu, Chang-Miao Liu, Huai-Tei Yang, Lun-Kuang Tan, Wei-Ming You
  • Patent number: 10347762
    Abstract: Embodiments disclosed herein relate generally to forming an ultra-shallow junction having high dopant concentration and low contact resistance in a p-type source/drain region. In an embodiment, a method includes forming a source/drain region in an active area on a substrate, the source/drain region comprising germanium, performing an ion implantation process using gallium (Ga) to form an amorphous region in the source/drain region, performing an ion implantation process using a dopant into the amorphous region, and subjecting the amorphous region to a thermal process.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: July 9, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Su-Hao Liu, Kuo-Ju Chen, Chun-Hung Wu, Chia-Cheng Chen, Liang-Yin Chen, Huicheng Chang, Ying-Lang Wang
  • Publication number: 20190157456
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The method includes forming a fin structure over a semiconductor substrate and forming a gate stack over the fin structure. The method also includes forming an epitaxial structure over the fin structure. The method further includes forming a dielectric layer over the epitaxial structure and forming an opening in the dielectric layer to expose the epitaxial structure. In addition, the method includes forming a modified region in the epitaxial structure. The modified region has lower crystallinity than an inner portion of the epitaxial structure and extends along an entirety of an exposed surface of the epitaxial structure. The method also includes forming a semiconductor-metal compound region on the epitaxial structure. All or some of the modified region is transformed into the semiconductor-metal compound region.
    Type: Application
    Filed: July 18, 2018
    Publication date: May 23, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Cheng CHEN, Su-Hao LIU, Kuo-Ju CHEN, Liang-Yin CHEN