Patents by Inventor Kuo-Ming Wu

Kuo-Ming Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240162051
    Abstract: Some implementations described herein include systems and techniques for fabricating a stacked die product. The systems and techniques include using a supporting fill mixture that includes a combination of types of composite particulates in a lateral gap region of a stack of semiconductor substrates and along a perimeter region of the stack of semiconductor substrates. One type of composite particulate included in the combination may be a relatively smaller size and include a smooth surface, allowing the composite particulate to ingress deep into the lateral gap region. Properties of the supporting fill mixture including the combination of types of composite particulates may control thermally induced stresses during downstream manufacturing to reduce a likelihood of defects in the supporting fill mixture and/or the stack of semiconductor substrates.
    Type: Application
    Filed: April 27, 2023
    Publication date: May 16, 2024
    Inventors: Kuo-Ming WU, Hau-Yi HSIAO, Kai-Yun YANG, Che Wei YANG, Sheng-Chau CHEN, Chung-Yi YU, Cheng-Yuan TSAI
  • Publication number: 20240162349
    Abstract: A device includes a semiconductor fin, and a gate stack on sidewalls and a top surface of the semiconductor fin. The gate stack includes a high-k dielectric layer, a work-function layer overlapping a bottom portion of the high-k dielectric layer, and a blocking layer overlapping a second bottom portion of the work-function layer. A low-resistance metal layer overlaps and contacts the work-function layer and the blocking layer. The low-resistance metal layer has a resistivity value lower than second resistivity values of both of the work-function layer and the blocking layer. A gate spacer contacts a sidewall of the gate stack.
    Type: Application
    Filed: January 24, 2024
    Publication date: May 16, 2024
    Inventors: Chung-Chiang Wu, Po-Cheng Chen, Kuo-Chan Huang, Hung-Chin Chung, Hsien-Ming Lee, Chien-Hao Chen
  • Patent number: 11984431
    Abstract: A structure and a method of forming are provided. The structure includes a first dielectric layer overlying a first substrate. A first connection pad is disposed in a top surface of the first dielectric layer and contacts a first redistribution line. A first dummy pad is disposed in the top surface of the first dielectric layer, the first dummy pad contacting the first redistribution line. A second dielectric layer overlies a second substrate. A second connection pad and a second dummy pad are disposed in the top surface of the second dielectric layer, the second connection pad bonded to the first connection pad, and the first dummy pad positioned in a manner that is offset from the second dummy pad so that the first dummy pad and the second dummy pad do not contact each other.
    Type: Grant
    Filed: January 19, 2023
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Ming Wu, Yung-Lung Lin, Zhi-Yang Wang, Sheng-Chau Chen, Cheng-Hsien Chou
  • Patent number: 11951569
    Abstract: In some embodiments, the present disclosure relates to a wafer edge trimming apparatus that includes a processing chamber defined by chamber housing. Within the processing chamber is a wafer chuck configured to hold onto a wafer structure. Further, a blade is arranged near an edge of the wafer chuck and configured to remove an edge potion of the wafer structure and to define a new sidewall of the wafer structure. A laser sensor apparatus is configured to direct a laser beam directed toward a top surface of the wafer chuck. The laser sensor apparatus is configured to measure a parameter of an analysis area of the wafer structure. Control circuitry is to the laser sensor apparatus and the blade. The control circuitry is configured to start a damage prevention process when the parameter deviates from a predetermined threshold value by at least a predetermined shift value.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Ming Wu, Yung-Lung Lin, Hau-Yi Hsiao, Sheng-Chau Chen, Cheng-Yuan Tsai
  • Publication number: 20240113237
    Abstract: The present disclosure provides a semiconductor structure and a method of manufacturing the same. The semiconductor structure includes a sensing device, a solar cell, and an interconnecting structure. The solar cell is disposed above the sensing device and is electrically connected to the sensing device. The interconnecting structure is disposed between the sensing device and the solar cell and has a first surface facing the solar cell and a second surface facing the sensing devices. The interconnecting structure comprises a first energy storage component and a second energy storage component. The first energy storage component is disposed closer to the first surface of the interconnecting structure than the second energy storage component.
    Type: Application
    Filed: January 10, 2023
    Publication date: April 4, 2024
    Inventors: FENG-CHIEN HSIEH, YUN-WEI CHENG, KUO-CHENG LEE, CHENG-MING WU, PING KUAN CHANG
  • Patent number: 11942543
    Abstract: A high-voltage semiconductor device structure is provided. The high-voltage semiconductor device structure includes a semiconductor substrate, a source ring in the semiconductor substrate, and a drain region in the semiconductor substrate. The high-voltage semiconductor device structure also includes a doped ring surrounding sides and a bottom of the source ring and a well region surrounding sides and bottoms of the drain region and the doped ring. The well region has a conductivity type opposite to that of the doped ring. The high-voltage semiconductor device structure further includes a conductor electrically connected to the drain region and extending over and across a periphery of the well region. In addition, the high-voltage semiconductor device structure includes a shielding element ring between the conductor and the semiconductor substrate. The shielding element ring extends over and across the periphery of the well region.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Chou Lin, Yi-Cheng Chiu, Karthick Murukesan, Yi-Min Chen, Shiuan-Jeng Lin, Wen-Chih Chiang, Chen-Chien Chang, Chih-Yuan Chan, Kuo-Ming Wu, Chun-Lin Tsai
  • Patent number: 11942541
    Abstract: A semiconductor device including a substrate, a source region, a drain region, a first gate structure and a second gate structure is provided. The source region and a drain region are formed in the substrate. The first gate structure is formed on the substrate and adjacent to the source region. The second gate structure is formed on the substrate and adjacent to the drain region. The second gate structure is electrically coupled to the drain region.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hong-Shyang Wu, Kuo-Ming Wu
  • Publication number: 20240096923
    Abstract: The image sensing structure includes a first semiconductor device and a second semiconductor device. The first semiconductor device includes at least one first unit. The at least one first unit includes a plurality of first interconnects adjacent to the top side of the first semiconductor device, a row selector, and an analog-to-digital converter (ADC) connected to the row selectors. The second semiconductor device includes at least one second unit. The at least one second unit includes a photodiode facing the top side of the second semiconductor device. The photodiode is configured to receive the light incident on the top side of the second semiconductor device. The top side of the first semiconductor device is bonded to the bottom side of the second semiconductor device.
    Type: Application
    Filed: January 6, 2023
    Publication date: March 21, 2024
    Inventors: FENG-CHIEN HSIEH, YUN-WEI CHENG, WEI-LI HU, KUO-CHENG LEE, CHENG-MING WU
  • Publication number: 20240096975
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a substrate; a gate structure formed on the substrate; a source region and a drain region formed in the substrate on either side of the gate structure, the source region and the drain region both having a first type of conductivity; and a dielectric layer having a first portion and a second portion, wherein the first portion of the dielectric layer is formed on a portion of the gate structure, and the second portion of the dielectric layer is formed on the substrate and extending to a portion of the drain region, wherein the dielectric layer includes at least one recess on the second portion. An associated fabricating method is also disclosed.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Hong-Shyang WU, Kuo-Ming WU
  • Patent number: 11935950
    Abstract: A device includes a first buried layer over a substrate, a second buried layer over the first buried layer, a first well over the first buried layer and the second buried layer, a first high voltage well, a second high voltage well and a third high voltage well extending through the first well, wherein the second high voltage well is between the first high voltage well and the third high voltage well, a first drain/source region in the first high voltage well, a first gate electrode over the first well, a second drain/source region in the second high voltage well and a first isolation region in the second high voltage well, and between the second drain/source region and the first gate electrode, wherein a bottom of the first isolation region is lower than a bottom of the second drain/source region.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Yu Chen, Wan-Hua Huang, Jing-Ying Chen, Kuo-Ming Wu
  • Publication number: 20240084455
    Abstract: Some implementations described herein include systems and techniques for fabricating a wafer-on-wafer product using a filled lateral gap between beveled regions of wafers included in a stacked-wafer assembly and along a perimeter region of the stacked-wafer assembly. The systems and techniques include a deposition tool having an electrode with a protrusion that enhances an electromagnetic field along the perimeter region of the stacked-wafer assembly during a deposition operation performed by the deposition tool. Relative to an electromagnetic field generated by a deposition tool not including the electrode with the protrusion, the enhanced electromagnetic field improves the deposition operation so that a supporting fill material may be sufficiently deposited.
    Type: Application
    Filed: February 8, 2023
    Publication date: March 14, 2024
    Inventors: Che Wei YANG, Chih Cheng SHIH, Kuo Liang LU, Yu JIANG, Sheng-Chan LI, Kuo-Ming WU, Sheng-Chau CHEN, Chung-Yi YU, Cheng-Yuan TSAI
  • Publication number: 20240079268
    Abstract: The present disclosure, in some embodiments, relates to a method of forming an integrated chip structure. The method may be performed by forming a plurality of interconnect layers within a first interconnect structure disposed over an upper surface of a first semiconductor substrate. An edge trimming process is performed to remove parts of the first interconnect structure and the first semiconductor substrate along a perimeter of the first semiconductor substrate. The edge trimming process results in the first semiconductor substrate having a recessed surface coupled to the upper surface by way of an interior sidewall disposed directly over the first semiconductor substrate. A dielectric capping structure is formed onto a sidewall of the first interconnect structure after performing the edge trimming process.
    Type: Application
    Filed: November 10, 2023
    Publication date: March 7, 2024
    Inventors: Chih-Hui Huang, Cheng-Hsien Chou, Cheng-Yuan Tsai, Kuo-Ming Wu, Sheng-Chan Li
  • Publication number: 20240079422
    Abstract: A pixel array includes octagon-shaped pixel sensors and a combination of visible light pixel sensors (e.g., red, green, and blue pixel sensors) and near infrared (NIR) pixel sensors. The color information obtained by the visible light pixel sensors and the luminance obtained by the NIR pixel sensors may be combined to increase the low-light performance of the pixel array, and to allow for low-light color images in low-light applications. The octagon-shaped pixel sensors may be interspersed in the pixel array with square-shaped pixel sensors to increase the utilization of space in the pixel array, and to allow for pixel sensors in the pixel array to be sized differently. The capability to accommodate different sizes of visible light pixel sensors and NIR pixel sensors permits the pixel array to be formed and/or configured to satisfy various performance parameters.
    Type: Application
    Filed: April 27, 2023
    Publication date: March 7, 2024
    Inventors: Feng-Chien HSIEH, Yun-Wei CHENG, Kuo-Cheng LEE, Cheng-Ming WU
  • Patent number: 11916146
    Abstract: A device includes a semiconductor fin, and a gate stack on sidewalls and a top surface of the semiconductor fin. The gate stack includes a high-k dielectric layer, a work-function layer overlapping a bottom portion of the high-k dielectric layer, and a blocking layer overlapping a second bottom portion of the work-function layer. A low-resistance metal layer overlaps and contacts the work-function layer and the blocking layer. The low-resistance metal layer has a resistivity value lower than second resistivity values of both of the work-function layer and the blocking layer. A gate spacer contacts a sidewall of the gate stack.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: February 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Chiang Wu, Po-Cheng Chen, Kuo-Chan Huang, Hung-Chin Chung, Hsien-Ming Lee, Chien-Hao Chen
  • Publication number: 20240047574
    Abstract: A semiconductor device includes a first well of a first conductivity type near a surface of a semiconductor substrate, and a second well of a second conductivity type near the surface of the semiconductor substrate. The semiconductor device includes a transistor comprising: (i) a first source/drain region formed in the first well; (ii) a second source/drain region formed in the second well; and (iii) a gate structure formed near the surface of the semiconductor substrate and separated from the second source/drain region at least with a portion of a third well of the second conductive type. The semiconductor device includes an isolation structure formed near the surface of the semiconductor substrate and further separating the second source/drain region from the gate structure. The semiconductor device includes a plurality of field plates formed above at least one of the portion of the third well or the isolation structure.
    Type: Application
    Filed: August 5, 2022
    Publication date: February 8, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hong-Shyang Wu, Kuo-Ming Wu
  • Patent number: 11862675
    Abstract: Various embodiments of the present application are directed towards an integrated circuit (IC) in which a high voltage metal-oxide-semiconductor (HVMOS) device is integrated with a high voltage junction termination (HVJT) device. In some embodiments, a first drift well and a second drift well are in a substrate. The first and second drift wells border in a ring-shaped pattern and have a first doping type. A peripheral well is in the substrate and has a second doping type opposite the first doping type. The peripheral well surrounds and separates the first and second drift wells. A body well is in the substrate and has the second doping type. Further, the body well overlies the first drift well and is spaced from the peripheral well by the first drift well. A gate electrode overlies a junction between the first drift well and the body well.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: January 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Karthick Murukesan, Wen-Chih Chiang, Chun Lin Tsai, Ker-Hsiao Huo, Kuo-Ming Wu, Po-Chih Chen, Ru-Yi Su, Shiuan-Jeng Lin, Yi-Min Chen, Hung-Chou Lin, Yi-Cheng Chiu
  • Patent number: 11862515
    Abstract: The present disclosure, in some embodiments, relates to a method of forming an integrated chip structure. The method may be performed by forming a plurality of interconnect layers within a first interconnect structure disposed over an upper surface of a first semiconductor substrate. An edge trimming process is performed to remove parts of the first interconnect structure and the first semiconductor substrate along a perimeter of the first semiconductor substrate. The edge trimming process results in the first semiconductor substrate having a recessed surface coupled to the upper surface by way of an interior sidewall disposed directly over the first semiconductor substrate. A dielectric capping structure is formed onto a sidewall of the first interconnect structure after performing the edge trimming process.
    Type: Grant
    Filed: August 4, 2022
    Date of Patent: January 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hui Huang, Cheng-Hsien Chou, Cheng-Yuan Tsai, Kuo-Ming Wu, Sheng-Chan Li
  • Patent number: 11855158
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a substrate; a gate structure formed on the substrate; a source region and a drain region formed in the substrate on either side of the gate structure, the source region and the drain region both having a first type of conductivity; and a dielectric layer having a first portion and a second portion, wherein the first portion of the dielectric layer is formed on a portion of the gate structure, and the second portion of the dielectric layer is formed on the substrate and extending to a portion of the drain region, wherein the dielectric layer includes at least one recess on the second portion. An associated fabricating method is also disclosed.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hong-Shyang Wu, Kuo-Ming Wu
  • Publication number: 20230411227
    Abstract: Some implementations described herein provide techniques and apparatuses for polishing a perimeter region of a semiconductor substrate so that a roll-off profile at or near the perimeter region of the semiconductor substrate satisfies a threshold. The described implementations include depositing a first layer of a first oxide material across the semiconductor substrate followed by depositing a second layer of a second oxide material over the first layer of the first oxide material and around a perimeter region of the semiconductor substrate. The described implementations further include polishing the second layer of the second oxide material over the perimeter region using a chemical mechanical planarization tool including one or more ring-shaped polishing pads oriented vertically over the perimeter region.
    Type: Application
    Filed: June 17, 2022
    Publication date: December 21, 2023
    Inventors: I-Nan. CHEN, Kuo-Ming WU, Ming-Che LEE, Hau-Yi HSIAO, Yung-Lung LIN, Che Wei YANG, Sheng-Chau CHEN
  • Patent number: 11848321
    Abstract: A semiconductor device is provided. The semiconductor device comprises an output circuit configured to be electrically connected between a driving circuit and an external load circuit, and a protection circuit electrically connected to the output circuit and the driving circuit. The protection circuit comprises a first transistor having a base electrode, a collector electrode and an emitter electrode and a second transistor having a base electrode, a collector electrode and an emitter electrode. The base electrode of the first transistor is electrically connected to the collector electrode of the second transistor.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: December 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hong-Shyang Wu, Kuo-Ming Wu