Patents by Inventor Kuo Pin Chang

Kuo Pin Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240130257
    Abstract: Devices and method for forming a switch including a heater layer including a first heater pad, a second heater pad, and a heater line connecting the first heater pad and the second heater pad, a phase change material (PCM) layer positioned in a same vertical plane as the heater line, and a floating spreader layer including a first portion positioned in the same vertical plane as the heater line and the PCM layer, in which the first portion has a first width that is less than or equal to a distance between proximate sidewalls of the first heater pad and the second heater pad.
    Type: Application
    Filed: April 21, 2023
    Publication date: April 18, 2024
    Inventors: Fu-Hai LI, Yi Ching ONG, Hsin Heng WANG, Tsung-Hao YEH, Yu-Wei TING, Kuo-Pin CHANG, Hung-Ju LI, Kuo-Ching HUANG
  • Publication number: 20230422517
    Abstract: A selector structure may include a bottom electrode including a bottom low thermal conductivity (LTC) metal and a first bottom high thermal conductivity (HTC) metal, a first switching film on the bottom electrode and having an electrical resistivity switchable by an electric field, and a first top electrode on the first switching film and including a first top low thermal conductivity (LTC) metal and a first top high thermal conductivity (HTC) metal.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Inventors: Hung-Ju LI, Kuo-Pin Chang, Yu-Wei Ting, Yu-Sheng Chen, Ching-En Chen, Kuo-Ching Huang
  • Publication number: 20230422643
    Abstract: A semiconductor structure comprising a first electrode, a second electrode, a phase-change material (PCM) line in contact with and positioned between the first electrode and the second electrode, at least two heater lines positioned between the first electrode and the second electrode, and an isolation layer positioned between the PCM line and the at least two heater lines is provided. A method of forming a semiconductor structure is provided, the method including forming a dielectric isolation layer having a planar top surface over a substrate, forming at least two heater lines over the planar top surface, forming at least one heater-capping dielectric plate over the at least two heater lines, forming a phase-change material (PCM) line over the at least one heater-capping dielectric plate, forming a first electrode and a second electrode, and forming a PCM-capping dielectric plate over the PCM line.
    Type: Application
    Filed: June 28, 2022
    Publication date: December 28, 2023
    Inventors: Kuo-Pin Chang, Yu-Wei Ting, Kuo-Ching Huang
  • Publication number: 20230422642
    Abstract: A phase-change material (PCM) switching device includes: a base dielectric layer over a semiconductor substrate; a first heater element disposed on the base dielectric layer, the first heater element comprising a first metal element characterized by a first coefficient of thermal expansion (CTE); a second heater element disposed on the first heater element, the second heater element comprising a second metal element characterized by a second CTE larger than the first CTE; a first metal pad and a second metal pad; and a PCM region comprising a PCM operable to switch between an amorphous state and a crystalline state in response to heat generated by the first heater element and the second heater element, wherein the PCM region is disposed above a top surface of the second heater element, and an air gap surrounds the first heater element and the second heater element from three sides.
    Type: Application
    Filed: June 28, 2022
    Publication date: December 28, 2023
    Inventors: Kuo-Pin Chang, Yu-Wei Ting, Yi Ching Ong, Kuo-Ching Huang, Harry-Hak-Lay Chuang
  • Publication number: 20230422644
    Abstract: A phase change device includes a substrate with a top surface. A heater structure is disposed on the substrate. The heater structure has first and second sidewalls on opposite sides of the heater structure. A phase change element is disposed over the heater structure. The phase change element includes three connected portions. A first portion is disposed over the heater structure. A second portion is disposed over the first sidewall of the heater structure. A third portion is over a first portion of the top surface of the substrate adjacent to and spaced apart from the first sidewall of the heater structure.
    Type: Application
    Filed: June 28, 2022
    Publication date: December 28, 2023
    Inventors: Kuo-Pin Chang, Yu-Wei Ting, Tsung-Hao Yeh, Kuo-Ching Huang
  • Patent number: 11854625
    Abstract: A device is disclosed herein. The device includes at least two transmit portions and at least one contact portion. Each of the at least two transmit portions is configured to receive a bit line signal. The at least one contact portion is couple to the at least two transmit portions respectively and configured to transmit the bit line signals from the least two transmit portions to a source line.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Pin Chang, Chien-Hung Liu, Chih-Wei Hung
  • Publication number: 20230413691
    Abstract: A phase-change material (PCM) switching device is provided. The PCM switching device includes: a base dielectric layer over a semiconductor substrate; a heater element embedded in the base dielectric layer, the heater element comprising a first metal element and configured to generate heat in response to a current flowing therethrough; a self-aligned dielectric layer disposed on the heater element, wherein the self-aligned dielectric layer comprises one of an oxide of the first metal element and a nitride of the first metal element, and the self-aligned dielectric layer is horizontally aligned with the heater element; a PCM region disposed on the self-aligned dielectric layer, wherein the PCM region comprises a PCM operable to switch between an amorphous state and a crystalline state in response to the heat generated by the heater element; and two metal pads electrically connected to the PCM region.
    Type: Application
    Filed: June 15, 2022
    Publication date: December 21, 2023
    Inventors: Kuo-Pin Chang, Hung-Ju Li, Yu-Wei Ting, Kuo-Ching Huang
  • Publication number: 20230402241
    Abstract: A semiconductor device is disclosed. The semiconductor device includes a semiconductor substrate, and a heater element on the semiconductor substrate, the heater element configured to generate heat in response to a current flowing therethrough. The semiconductor device also includes a conductor material having a programmable conductivity, and an insulator layer between the heater element and the conductor material, where the conductor material is configured to be programmed by applying one or more voltage differences to one or more of the heater element and the conductor material, and where a capacitance between the conductor material and the heater element is configured to be controlled by the voltage differences such that the capacitance is lower while the conductor material is being programmed than while the conductor material is not being programmed.
    Type: Application
    Filed: June 8, 2022
    Publication date: December 14, 2023
    Inventors: Yu-Wei Ting, Kuo-Pin Chang, Hung-Ju Li, Kuo-Ching Huang
  • Publication number: 20230403954
    Abstract: Phase change material (PCM) switches and methods of fabrication thereof that provide improved thermal confinement within a phase change material layer. A PCM switch may include a dielectric capping layer between a heater pad and the phase change material layer of the PCM switch that is laterally-confined such opposing sides of the dielectric capping layer the heater pad may form continuous surfaces extending transverse to the signal transmission pathway across the PCM switch. Heat transfer from the heater pad through the dielectric capping layer to the phase change material layer may be predominantly vertical, with minimal thermal dissipation along a lateral direction. The localized heating of the phase change material may improve the efficiency of the PCM switch enabling lower bias voltages, minimize the formation of regions of intermediate resistivity in the PCM switch, and improve the parasitic capacitance characteristics of the PCM switch.
    Type: Application
    Filed: June 9, 2022
    Publication date: December 14, 2023
    Inventors: Kuo-Pin Chang, Yu-Wei Ting, Tsung-Hao Yeh, Kuo-Chyuan Tzeng, Kuo-Ching Huang
  • Publication number: 20230397440
    Abstract: A memory device is provided in various embodiments. The memory device, in those embodiments, has an ovonic threshold switching (OTS) selector comprising multiple layers of OTS materials to achieve a low leakage current and as well as relatively low threshold voltage for the OTS selector. The multiple layers can have at least one layer of low bandgap OTS material and at least one layer of high bandgap OTS material.
    Type: Application
    Filed: June 7, 2022
    Publication date: December 7, 2023
    Inventors: Hung-Ju Li, Kuo-Pin Chang, Yu-Wei Ting, Ching-En Chen, Kuo-Ching Huang
  • Publication number: 20230380194
    Abstract: A cell array of a memory device includes: a first deck of memory cells arranged in a first row and a second row extending in a first horizontal direction and a plurality of columns extending in a second horizontal direction, wherein the memory cells in the second row in the first deck is displaced in the first horizontal direction with respect to the memory cells in the first row in the first deck; a first common word line metal track extending in the first horizontal direction, wherein both the memory cells in the first row and the memory cells in the second row are disposed on the first common word line metal track; and a plurality of first bit line metal tracks extending in the second horizontal direction, wherein each of the plurality of first bit line metal tracks is disposed on one of the first deck of memory cells.
    Type: Application
    Filed: May 23, 2022
    Publication date: November 23, 2023
    Inventors: Kuo-Pin Chang, Kuo-Ching Huang
  • Publication number: 20230360711
    Abstract: A one-time programmable (OTP) memory includes a plurality of bit lines, a plurality of word lines, and a plurality of memory cells, each memory cell of the plurality of memory cells including a first terminal coupled to a bit line of the plurality of bit lines, a second terminal coupled to a word line of the plurality of word lines, and a selector coupled between the first terminal and the second terminal and having a threshold voltage that is alterable by an electric current.
    Type: Application
    Filed: May 5, 2022
    Publication date: November 9, 2023
    Inventors: Kuo-Pin Chang, Kuo-Ching Huang
  • Publication number: 20230309325
    Abstract: Some embodiments relate to an embedded memory device with vertically stacked source, drain and gate connections. The semiconductor memory device includes a substrate and a pillar of channel material extending in a first direction. A bit line is disposed over the pillar of channel material and is coupled to the pillar of channel material, and extends in a second direction that is perpendicular to the first direction. Word lines are on opposite sides of the pillar of channel material and extend in a third direction. The third direction is perpendicular to the second direction. A dielectric layer separates the word lines from the pillar of channel material. Source lines extend in the third direction over the substrate, directly beneath the word lines. Variable resistance memory layers are between the source lines and an outer sidewall of the dielectric layer, laterally surrounding the sidewalls of the pillar of channel material.
    Type: Application
    Filed: March 22, 2022
    Publication date: September 28, 2023
    Inventors: Kuo-Pin Chang, Yu-Wei Ting, Kuo-Ching Huang
  • Publication number: 20230209836
    Abstract: A memory device having a 3D structure provides MFMIS-FET memory cells with a high chip area density. The memory device includes a stack of memory cell layers interleaved with insulating layers. Channel vias penetrate through the stack. Channels of the memory cells are disposed in the channel vias. MFM portions of memory cells are sandwiched between the insulating layers in areas lateral to the channel vias. The MFM portions may be radially distributed from the channel vias and include a floating gate, a ferroelectric layer, and a gate electrode. The gate electrodes associated with a plurality of MFM structures may be united into a word line gate. The ferroelectric layer may wrap around the word line gate, whereby the ferroelectric layer is disposed above and below the word line gate as well as between the word line gate and each of the floating gates.
    Type: Application
    Filed: April 20, 2022
    Publication date: June 29, 2023
    Inventors: Kuo-Pin Chang, Chien Hung Liu
  • Publication number: 20230102075
    Abstract: A semiconductor device includes a semiconductor substrate, a first semiconductor layer, a first floating gate electrode, a first control gate electrode, an erase gate electrode, and a blocking layer. The semiconductor substrate has a first source/drain region. The first semiconductor layer extends upward from the first source/drain region of the semiconductor substrate. The first floating gate electrode surrounds the first semiconductor layer. The first control gate electrode surrounds the first floating gate electrode and the first semiconductor layer. The erase gate electrode is over the first floating gate electrode and the first control gate electrode. The erase gate electrode surrounds the first semiconductor layer. The blocking layer has a first portion between the first floating gate electrode and the first control gate electrode and a second portion between the erase gate electrode and the first semiconductor layer.
    Type: Application
    Filed: December 8, 2022
    Publication date: March 30, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Pin CHANG, Chien-Hung LIU, Chih-Wei HUNG
  • Publication number: 20230071284
    Abstract: A memory cell, an integrated circuit and method of manufacturing the same are provided. The memory device includes a substrate, gate layers and insulating layers, an isolation column, a channel layer, a first conductive feature, a second conductive feature, a storage layer and a pair of isolation structures. The isolation column extends through the gate layers and the insulating layers along a first direction. The channel layer laterally covers the isolation column. The first conductive feature and second conductive feature extend along the first direction and adjacent to the isolation column. The storage layer is disposed between the gate layers and the channel layer. The pair of isolation structures extends along the first direction. The pair of isolation structures includes a first isolation structure disposed between the first conductive feature and the gate layers, and a second isolation structure disposed between the second conductive feature and the gate layers.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 9, 2023
    Inventors: KUO-PIN CHANG, CHIEN HUNG LIU, CHIH-WEI HUNG
  • Publication number: 20230020696
    Abstract: An anti-fuse memory cell includes a substrate, a gate dielectric layer over the substrate, a word line gate over the gate dielectric layer, a first implant region on a first side of the word line gate, a bit line contact plug over the first implant region, a second implant region on a second side of the word line gate opposite the first side of the word line gate, an oxidized region on the second implant region and having a convex upper surface and a source line gate over the convex upper surface of the oxidized region.
    Type: Application
    Filed: July 16, 2021
    Publication date: January 19, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Pin CHANG, Chien-Hung LIU, Chih-Wei HUNG
  • Patent number: 11527630
    Abstract: A method for fabricating a semiconductor device is provided. The method includes depositing a first dielectric layer over a substrate; depositing a sacrificial layer over the first dielectric layer; depositing a second dielectric layer over the sacrificial layer; depositing an erase gate electrode layer over the second dielectric layer; etching a memory hole in the erase gate electrode layer, the sacrificial layer, and the first and second dielectric layers; and forming a semiconductor layer in the memory hole.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: December 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Pin Chang, Chien-Hung Liu, Chih-Wei Hung
  • Publication number: 20220284969
    Abstract: A device is disclosed herein. The device includes at least two transmit portions and at least one contact portion. Each of the at least two transmit portions is configured to receive a bit line signal. The at least one contact portion is couple to the at least two transmit portions respectively and configured to transmit the bit line signals from the least two transmit portions to a source line.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 8, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Pin CHANG, Chien-Hung LIU, Chih-Wei HUNG
  • Publication number: 20210408253
    Abstract: A method for fabricating a semiconductor device is provided. The method includes depositing a first dielectric layer over a substrate; depositing a sacrificial layer over the first dielectric layer; depositing a second dielectric layer over the sacrificial layer; depositing an erase gate electrode layer over the second dielectric layer; etching a memory hole in the erase gate electrode layer, the sacrificial layer, and the first and second dielectric layers; and forming a semiconductor layer in the memory hole.
    Type: Application
    Filed: June 24, 2020
    Publication date: December 30, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Pin CHANG, Chien-Hung LIU, Chih-Wei HUNG