Patents by Inventor Lara Hawrylchak

Lara Hawrylchak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10770272
    Abstract: Implementations described herein provide for thermal substrate processing apparatus including two thermal process chambers, each defining a process volume, and a substrate support disposed within each process volume. One or more remote plasma sources may be in fluid communication with the process volumes and the remote plasma sources may be configured to deliver a plasma to the process volumes. Various arrangements of remote plasma sources and chambers are described.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: September 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Lara Hawrylchak, Matthew D. Scotney-Castle, Norman L. Tam, Matthew Spuller, Kong Lung Samuel Chan, Dongming Iu
  • Patent number: 10763141
    Abstract: Embodiments of the disclosure relate to methods for measuring temperature and a tool for calibrating temperature control of a substrate support in a processing chamber without contact with a surface of the substrate support. In one embodiment, a test fixture with a temperature sensor is removably mounted to an upper surface of a chamber body of the processing chamber such that the temperature sensor has a field of view including an area of the substrate support that is adjacent to a resistive coil disposed in the substrate support. One or more calibration temperature measurements of the area of the substrate support are taken by the temperature sensor and simultaneously one or more calibration resistance measurements of the resistive coil are taken corresponding to each calibration temperature measurement. Temperature control of a heating element disposed in the substrate support is calibrated based on the calibration temperature and calibration resistance measurements.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: September 1, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Niraj Merchant, Lara Hawrylchak, Mehran Behdjat, Dietrich Gage, Christopher Dao, Binh Nguyen, Michael P. Kamp, Mahesh Ramakrishna
  • Patent number: 10763090
    Abstract: Embodiments of the invention generally provide a processing chamber used to perform a physical vapor deposition (PVD) process and methods of depositing multi-compositional films. The processing chamber may include: an improved RF feed configuration to reduce any standing wave effects; an improved magnetron design to enhance RF plasma uniformity, deposited film composition and thickness uniformity; an improved substrate biasing configuration to improve process control; and an improved process kit design to improve RF field uniformity near the critical surfaces of the substrate.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: September 1, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Adolph Miller Allen, Lara Hawrylchak, Zhigang Xie, Muhammad M. Rasheed, Rongjun Wang, Xianmin Tang, Zhendong Liu, Tza-Jing Gung, Srinivas Gandikota, Mei Chang, Michael S. Cox, Donny Young, Kirankumar Savandaiah, Zhenbin Ge
  • Patent number: 10741428
    Abstract: A semiconductor processing apparatus is described that has a body with a wall defining two processing chambers within the body; a passage through the wall forming a fluid coupling between the two processing chambers; a lid removably coupled to the body, the lid having a portal in fluid communication with the passage; a gas activator coupled to the lid outside the processing chambers, the gas activator having an outlet in fluid communication with the portal of the lid; a substrate support disposed in each processing chamber, each substrate support having at least two heating zones, each with an embedded heating element; a gas distributor coupled to the lid facing each substrate support; and a thermal control member coupled to the lid at an edge of each gas distributor.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: August 11, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Aaron Muir Hunter, Mehran Behdjat, Niraj Merchant, Douglas R. McAllister, Dongming Iu, Kong Lung Chan, Lara Hawrylchak
  • Publication number: 20200251331
    Abstract: Methods for conformal radical oxidation of structures are provided. The method comprises positioning a substrate in a processing region of a processing chamber. The method further comprises flowing hydrogen gas into a precursor activator at a first flow rate, wherein the precursor activator is fluidly coupled with the processing region. The method further comprises flowing oxygen gas into the precursor activator at a second flow rate. The method further comprises flowing argon gas into the precursor activator at a third flow rate. The method further comprises generating a plasma in the precursor activator from the hydrogen gas, oxygen gas, and argon gas. The method further comprises flowing the plasma into the processing region. The method further comprises exposing the substrate to the plasma to form an oxide film on the substrate, wherein a growth rate of the oxide film is controlled by adjusting the third flow rate.
    Type: Application
    Filed: April 15, 2020
    Publication date: August 6, 2020
    Inventors: Hansel LO, Christopher S. OLSEN, Eric Kihara SHONO, Johanes S. SWENBERG, Erika HANSEN, Taewan KIM, Lara HAWRYLCHAK
  • Publication number: 20200240014
    Abstract: A gas injector for processing a substrate includes a body having an inlet connectable to a gas source that is configured to provide a gas flow in a first direction into the inlet when processing a substrate on a substrate support disposed within a processing volume of a processing chamber, and an a gas injection channel formed in the body. The gas injection channel is in fluid communication with the inlet and configured to deliver the gas flow to an inlet of the processing chamber. The gas injection channel has a first interior surface and a second interior surface that are parallel to a second direction and a third direction. The second and third directions do not intersect a center of the substrate, and are at an angle to the first direction towards a first edge of the substrate support.
    Type: Application
    Filed: January 29, 2020
    Publication date: July 30, 2020
    Inventors: Eric Kihara Shono, Vishwas Kumar Pandey, Christopher S. Olsen, Kartik Shah, Hansel Lo, Tobin Kaufman-Osborn, Rene George, Lara Hawrylchak, Erika Hansen
  • Patent number: 10689757
    Abstract: A gas injection apparatus for a thermal processing chamber includes a gas injector having an inlet at a first end and a port at a second end; and a plate having a first opening matching the port, one or more second openings, and at least one circuitous flow path defined by the plate and fluidly connecting the first opening to the one or more second openings.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: June 23, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lara Hawrylchak, Agus Sofian Tjandra, Emre Cuvalci
  • Publication number: 20200149968
    Abstract: Examples described herein generally relate to apparatus and methods for rapid thermal processing (RTP) of a substrate. In one or more embodiments, a process chamber includes chamber body, a window disposed on a first portion of the chamber body, a chamber bottom, and a shield disposed on a second portion of the chamber body. The shield has a flat surface facing the window to reduce reflected radiant energy to a back side of a substrate disposed in the process chamber during operation. The process chamber further includes an edge support for supporting the substrate and a cooling member disposed on the chamber bottom. The cooling member is disposed in proximity of the edge support to cool the edge support during low temperature operation in order to improve the temperature uniformity of the substrate.
    Type: Application
    Filed: January 14, 2020
    Publication date: May 14, 2020
    Inventors: Lara HAWRYLCHAK, Samuel C. HOWELLS, Wolfgang R. ADERHOLD, Leonid M. TERTITSKI, Michael LIU, Dongming IU, Norman L. TAM, Ji-Dih HU
  • Patent number: 10636650
    Abstract: Methods for conformal radical oxidation of structures are provided. In one implementation, the method comprises flowing hydrogen into a processing chamber at a first flow rate, wherein the processing chamber has a substrate positioned therein. The method further comprises flowing oxygen into a precursor activator at a second flow rate. The method further comprises flowing argon into the precursor activator at a third flow rate. The method further comprises generating a plasma in the precursor activator from the oxygen and argon. The method further comprises flowing the plasma into the processing chamber, wherein the plasma mixes with the hydrogen gas to create an activated processing gas. The method further comprises exposing the substrate to the activated gas to form an oxide film on the substrate. A growth rate of the oxide film is controlled by adjusting the third flow rate.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: April 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Hansel Lo, Christopher S. Olsen, Eric Kihara Shono, Johanes S. Swenberg, Erika Hansen, Taewan Kim, Lara Hawrylchak
  • Patent number: 10626500
    Abstract: Embodiments described herein relate to a showerhead having a reflector plate with a gas injection insert for radially distributing gas. In one embodiment, a showerhead assembly includes a reflector plate and a gas injection insert. The reflector plate includes at least one gas injection port. The gas injection insert is disposed in the reflector plate, and includes a plurality of apertures. The gas injection insert also includes a baffle plate disposed in the gas injection insert, wherein the baffle plate also includes a plurality of apertures. A first plenum is formed between a first portion of the baffle plate and the reflector plate, and a second plenum is formed between a second portion of the baffle plate and the reflector plate. The plurality of apertures of the gas injection insert and the plurality of apertures of the baffle plate are not axially aligned.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: April 21, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kartik Shah, Chaitanya A. Prasad, Kevin Joseph Bautista, Jeffrey Tobin, Umesh M. Kelkar, Lara Hawrylchak
  • Publication number: 20200111659
    Abstract: A method of modifying a layer in a semiconductor device is provided. The method includes depositing a low quality film on a semiconductor substrate, and exposing a surface of the low quality film to a first process gas comprising helium while the substrate is heated to a first temperature, and exposing a surface of the low quality film to a second process gas comprising oxygen gas while the substrate is heated to a second temperature that is different than the first temperature. The electrical properties of the film are improved by undergoing the aforementioned processes.
    Type: Application
    Filed: October 4, 2018
    Publication date: April 9, 2020
    Inventors: Wei LIU, Theresa Kramer GUARINI, Linlin WANG, Malcolm BEVAN, Johanes S. SWENBERG, Vladimir NAGORNY, Bernard L. HWANG, Kin Pong LO, Lara HAWRYLCHAK, Rene GEORGE
  • Patent number: 10571337
    Abstract: Examples described herein generally relate to apparatus and methods for rapid thermal processing (RTP) of a substrate. In one example, a process chamber includes chamber body, a window disposed on a first portion of the chamber body, a chamber bottom, and a shield disposed on a second portion of the chamber body. The shield has a flat surface facing the window to reduce reflected radiant energy to a back side of a substrate disposed in the process chamber during operation. The process chamber further includes an edge support for supporting the substrate and a cooling member disposed on the chamber bottom. The cooling member is disposed in proximity of the edge support to cool the edge support during low temperature operation in order to improve the temperature uniformity of the substrate.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: February 25, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lara Hawrylchak, Samuel C. Howells, Wolfgang R. Aderhold, Leonid M. Tertitski, Michael Liu, Dongming Iu, Norman L. Tam, Ji-Dih Hu
  • Patent number: 10535513
    Abstract: Provided apparatus and methods for back side passivation of a substrate. The systems comprise an elongate support with an open top surface forming a support ring so that when a substrate is on the support ring, a cavity is formed within the elongate support. A plasma generator is coupled to the cavity to generate a plasma within the cavity to deposit a passivation film on the back side of the substrate.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: January 14, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Lara Hawrylchak, Jeffrey Tobin
  • Publication number: 20190385825
    Abstract: Embodiments described herein generally relate to a method and apparatus for fabricating a chamber component for a plasma process chamber. In one embodiment a chamber component used within a plasma processing chamber is provided that includes a metallic base material comprising a roughened non-planar first surface, wherein the roughened non-planar surface has an Ra surface roughness of between 4 micro-inches and 80 micro-inches, a planar silica coating formed over the roughened non-planar surface, wherein the planar silica coating has a surface that has an Ra surface roughness that is less than the Ra surface roughness of the roughened non-planar surface, a thickness between about 0.2 microns and about 10 microns, less than 1% porosity by volume, and contains less than 2E12 atoms/centimeters2 of aluminum.
    Type: Application
    Filed: May 21, 2019
    Publication date: December 19, 2019
    Inventors: Jian WU, Wei LIU, Theresa Kramer GUARINI, Linlin WANG, Malcolm BEVAN, Lara HAWRYLCHAK
  • Publication number: 20190382917
    Abstract: Embodiments of the present invention generally relate to methods for removing contaminants and native oxides from substrate surfaces. The methods generally include removing contaminants disposed on the substrate surface using a plasma process, and then cleaning the substrate surface by use of a remote plasma assisted dry etch process.
    Type: Application
    Filed: August 26, 2019
    Publication date: December 19, 2019
    Inventors: Christopher S. OLSEN, Theresa K. GUARINI, Jeffrey TOBIN, Lara HAWRYLCHAK, Peter STONE, Chi Wei LO, Saurabh CHOPRA
  • Patent number: 10428441
    Abstract: Embodiments of the present invention generally relate to methods for removing contaminants and native oxides from substrate surfaces. The methods generally include removing contaminants disposed on the substrate surface using a plasma process, and then cleaning the substrate surface by use of a remote plasma assisted dry etch process.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: October 1, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Christopher S. Olsen, Theresa K. Guarini, Jeffrey Tobin, Lara Hawrylchak, Peter Stone, Chi Wei Lo, Saurabh Chopra
  • Publication number: 20190272982
    Abstract: Implementations of the present disclosure generally relate to an improved substrate support pedestal assembly. In one implementation, the substrate support pedestal assembly includes a shaft. The substrate support pedestal assembly further includes a substrate support pedestal, mechanically coupled to the shaft. The substrate support pedestal comprises substrate support plate coated on a top surface with a ceramic material.
    Type: Application
    Filed: March 23, 2018
    Publication date: September 5, 2019
    Inventors: Lara HAWRYLCHAK, Chaitanya A. PRASAD
  • Publication number: 20190221427
    Abstract: Methods for conformal radical oxidation of structures are provided. In one implementation, the method comprises flowing hydrogen into a processing chamber at a first flow rate, wherein the processing chamber has a substrate positioned therein. The method further comprises flowing oxygen into a precursor activator at a second flow rate. The method further comprises flowing argon into the precursor activator at a third flow rate. The method further comprises generating a plasma in the precursor activator from the oxygen and argon. The method further comprises flowing the plasma into the processing chamber, wherein the plasma mixes with the hydrogen gas to create an activated processing gas. The method further comprises exposing the substrate to the activated gas to form an oxide film on the substrate. A growth rate of the oxide film is controlled by adjusting the third flow rate.
    Type: Application
    Filed: December 20, 2018
    Publication date: July 18, 2019
    Inventors: Hansel LO, Christopher S. OLSEN, Eric Kihara SHONO, Johanes S. SWENBERG, Erika HANSEN, Taewan KIM, Lara HAWRYLCHAK
  • Publication number: 20190194810
    Abstract: Embodiments described herein relate to a showerhead having a reflector plate with a gas injection insert for radially distributing gas. In one embodiment, a showerhead assembly includes a reflector plate and a gas injection insert. The reflector plate includes at least one gas injection port. The gas injection insert is disposed in the reflector plate, and includes a plurality of apertures. The gas injection insert also includes a baffle plate disposed in the gas injection insert, wherein the baffle plate also includes a plurality of apertures. A first plenum is formed between a first portion of the baffle plate and the reflector plate, and a second plenum is formed between a second portion of the baffle plate and the reflector plate. The plurality of apertures of the gas injection insert and the plurality of apertures of the baffle plate are not axially aligned.
    Type: Application
    Filed: March 4, 2019
    Publication date: June 27, 2019
    Inventors: Kartik SHAH, Chaitanya A. PRASAD, Kevin Joseph BAUTISTA, Jeffrey TOBIN, Umesh M. KELKAR, Lara HAWRYLCHAK
  • Patent number: 10290504
    Abstract: Embodiments described herein generally relate to a method and apparatus for plasma treating a process chamber. A substrate having a gate stack formed thereon may be placed in a process chamber, and hydrogen containing plasma may be used to treat the gate stack in order to cure the defects in the gate stack. As the result of hydrogen containing plasma treatment, the gate stack has lower leakage and improved reliability. To protect the process chamber from Hx+ ions and H* radicals generated by the hydrogen containing plasma, the process chamber may be treated with a plasma without the substrate placed therein and prior to the hydrogen containing plasma treatment. In addition, components of the process chamber that are made of a dielectric material may be coated with a ceramic coating including an yttrium containing oxide in order to protect the components from the plasma.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: May 14, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Wei Liu, Theresa Kramer Guarini, Huy Q. Nguyen, Malcolm Bevan, Houda Graoui, Philip A. Bottini, Bernard L. Hwang, Lara Hawrylchak, Rene George