Patents by Inventor Lara Hawrylchak

Lara Hawrylchak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9831091
    Abstract: Embodiments described herein generally relate to a method and apparatus for plasma treating a process chamber. A substrate having a gate stack formed thereon may be placed in a process chamber, and hydrogen containing plasma may be used to treat the gate stack in order to cure the defects in the gate stack. As the result of hydrogen containing plasma treatment, the gate stack has lower leakage and improved reliability. To protect the process chamber from Hx+ ions and H* radicals generated by the hydrogen containing plasma, the process chamber may be treated with a plasma without the substrate placed therein and prior to the hydrogen containing plasma treatment. In addition, components of the process chamber that are made of a dielectric material may be coated with a ceramic coating including an yttrium containing oxide in order to protect the components from the plasma.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: November 28, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Wei Liu, Theresa Kramer Guarini, Huy Q. Nguyen, Malcolm Bevan, Houda Graoui, Philip A. Bottini, Bernard L. Hwang, Lara Hawrylchak, Rene George
  • Publication number: 20170316924
    Abstract: Embodiments of the invention generally relate to an anode for a semiconductor processing chamber. More specifically, embodiments described herein relate to a process kit including a shield serving as an anode in a physical deposition chamber. The shield has a cylindrical band, the cylindrical band having a top and a bottom, the cylindrical band sized to encircle a sputtering surface of a sputtering target disposed adjacent the top and a substrate support disposed at the bottom, the cylindrical band having an interior surface. A texture is disposed on the interior surface. The texture has a plurality of features. A shaded area is disposed in the feature wherein the shaded area is not visible to the sputtering target. A small anode surface is disposed in the shaded area.
    Type: Application
    Filed: February 14, 2017
    Publication date: November 2, 2017
    Inventors: Michael S. COX, Lara HAWRYLCHAK, Brian T. WEST
  • Publication number: 20170294292
    Abstract: Implementations described herein provide for thermal substrate processing apparatus including two thermal process chambers, each defining a process volume, and a substrate support disposed within each process volume. One or more remote plasma sources may be in fluid communication with the process volumes and the remote plasma sources may be configured to deliver a plasma to the process volumes. Various arrangements of remote plasma sources and chambers are described.
    Type: Application
    Filed: April 5, 2017
    Publication date: October 12, 2017
    Inventors: Lara HAWRYLCHAK, Matthew D. SCOTNEY-CASTLE, Norman L. TAM, Matthew SPULLER, Kong Lung Samuel CHAN, Dongming IU
  • Publication number: 20170294325
    Abstract: A semiconductor processing apparatus is described that has a body with a wall defining two processing chambers within the body; a passage through the wall forming a fluid coupling between the two processing chambers; a lid removably coupled to the body, the lid having a portal in fluid communication with the passage; a gas activator coupled to the lid outside the processing chambers, the gas activator having an outlet in fluid communication with the portal of the lid; a substrate support disposed in each processing chamber, each substrate support having at least two heating zones, each with an embedded heating element; a gas distributor coupled to the lid facing each substrate support; and a thermal control member coupled to the lid at an edge of each gas distributor.
    Type: Application
    Filed: January 27, 2017
    Publication date: October 12, 2017
    Inventors: Aaron Muir HUNTER, Mehran BEHDJAT, Niraj MERCHANT, Douglas R. MCALLISTER, Dongming IU, Kong Lung CHAN, Lara HAWRYLCHAK
  • Patent number: 9773692
    Abstract: Embodiments described herein generally relate to an electrostatic chuck (ESC). The ESC may contain a first plurality of electrodes adapted to electrostatically couple a substrate to the ESC and a second plurality of electrodes adapted to electrostatically couple the ESC to a substrate support. Instead of being integrally disposed within the substrate support, the ESC may be easily removed from the substrate support and removed from a chamber for maintenance or replacement purposes.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: September 26, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael S. Cox, Lara Hawrylchak, Steven V. Sansoni
  • Patent number: 9683308
    Abstract: Embodiments of the present invention generally relate to methods for removing contaminants and native oxides from substrate surfaces. The methods generally include removing contaminants disposed on the substrate surface using a plasma process, and then cleaning the substrate surface by use of a remote plasma assisted dry etch process.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: June 20, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Christopher S. Olsen, Theresa K. Guarini, Jeffrey Tobin, Lara Hawrylchak, Peter Stone, Chi Wei Lo, Saurabh Chopra
  • Publication number: 20170062260
    Abstract: Embodiments described herein generally relate to an electrostatic chuck (ESC). The ESC may contain a first plurality of electrodes adapted to electrostatically couple a substrate to the ESC and a second plurality of electrodes adapted to electrostatically couple the ESC to a substrate support. Instead of being integrally disposed within the substrate support, the ESC may be easily removed from the substrate support and removed from a chamber for maintenance or replacement purposes.
    Type: Application
    Filed: November 16, 2016
    Publication date: March 2, 2017
    Inventors: Michael S. COX, Lara HAWRYLCHAK, Steven V. SANSONI
  • Publication number: 20170029941
    Abstract: Embodiments of the invention generally provide a processing chamber used to perform a physical vapor deposition (PVD) process and methods of depositing multi-compositional films. The processing chamber may include: an improved RF feed configuration to reduce any standing wave effects; an improved magnetron design to enhance RF plasma uniformity, deposited film composition and thickness uniformity; an improved substrate biasing configuration to improve process control; and an improved process kit design to improve RF field uniformity near the critical surfaces of the substrate.
    Type: Application
    Filed: August 15, 2016
    Publication date: February 2, 2017
    Inventors: Adolph Miller ALLEN, Lara HAWRYLCHAK, Zhigang XIE, Muhammad M. RASHEED, Rongjun WANG, Xianmin TANG, Zhendong LIU, Tza-Jing GUNG, Srinivas GANDIKOTA, Mei CHANG, Michael S. COX, Donny YOUNG, Kirankumar SAVANDAIAH, Zhenbin GE
  • Publication number: 20170018413
    Abstract: Embodiments of the invention generally provide a process kit for use in a physical deposition chamber (PVD) chamber. In one embodiment, the process kit provides adjustable process spacing, centering between the cover ring and the shield, and controlled gas flow between the cover ring and the shield contributing to uniform gas distribution, which promotes greater process uniformity and repeatability along with longer chamber component service life.
    Type: Application
    Filed: September 29, 2016
    Publication date: January 19, 2017
    Inventors: Lara HAWRYLCHAK, Kirankumar SAVANDAIAH
  • Publication number: 20160358781
    Abstract: Embodiments described herein generally relate to a method and apparatus for plasma treating a process chamber. A substrate having a gate stack formed thereon may be placed in a process chamber, and hydrogen containing plasma may be used to treat the gate stack in order to cure the defects in the gate stack. As the result of hydrogen containing plasma treatment, the gate stack has lower leakage and improved reliability. To protect the process chamber from Hx+ ions and H* radicals generated by the hydrogen containing plasma, the process chamber may be treated with a plasma without the substrate placed therein and prior to the hydrogen containing plasma treatment. In addition, components of the process chamber that are made of a dielectric material may be coated with a ceramic coating including an yttrium containing oxide in order to protect the components from the plasma.
    Type: Application
    Filed: June 2, 2016
    Publication date: December 8, 2016
    Inventors: Wei LIU, Theresa Kramer GUARINI, Huy Q. NGUYEN, Malcolm BEVAN, Houda GRAOUI, Philip A. BOTTINI, Bernard L. HWANG, Lara HAWRYLCHAK, Rene GEORGE
  • Patent number: 9514968
    Abstract: Methods and apparatus for improving selective oxidation against metals in a process chamber are provided herein. In some embodiments, a method of oxidizing a first surface of a substrate disposed in a process chamber having a processing volume defined by one or more chamber walls may include exposing the substrate to an oxidizing gas to oxidize the first surface; and actively heating at least one of the one or more chamber walls to increase a temperature of the one or more chamber walls to a first temperature of at least the dew point of water while exposing the substrate to the oxidizing gas.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: December 6, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Agus Tjandra, Christopher S. Olsen, Johanes Swenberg, Lara Hawrylchak
  • Patent number: 9508584
    Abstract: Embodiments described herein generally relate to an electrostatic chuck (ESC). The ESC may contain a first plurality of electrodes adapted to electrostatically couple a substrate to the ESC and a second plurality of electrodes adapted to electrostatically couple the ESC to a substrate support. Instead of being integrally disposed within the substrate support, the ESC may be easily removed from the substrate support and removed from a chamber for maintenance or replacement purposes.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: November 29, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael S. Cox, Lara Hawrylchak, Steven V. Sansoni
  • Patent number: 9464349
    Abstract: Embodiments of the invention generally provide a process kit for use in a physical deposition chamber (PVD) chamber. In one embodiment, the process kit provides adjustable process spacing, centering between the cover ring and the shield, and controlled gas flow between the cover ring and the shield contributing to uniform gas distribution, which promotes greater process uniformity and repeatability along with longer chamber component service life.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: October 11, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lara Hawrylchak, Kirankumar Savandaiah
  • Publication number: 20160010206
    Abstract: Embodiments disclosed herein generally include a method for forming an oxide layer having improved thickness uniformity on a substrate. The method includes heating a substrate disposed in a processing chamber to a temperature less than about 700 degrees Celsius, flowing a first gas mixture into the processing chamber from a first gas inlet, and flowing a second gas mixture into the processing chamber from a second gas inlet. The composition and flow rate of the second gas mixture, and the composition and flow rate of the first gas mixture are controlled so the oxide layer formed on the substrate has improved thickness uniformity.
    Type: Application
    Filed: July 8, 2015
    Publication date: January 14, 2016
    Inventors: Agus Sofian TJANDRA, Christopher S. OLSEN, Emre CUVALCI, Lara HAWRYLCHAK
  • Publication number: 20150332941
    Abstract: Methods and apparatus for processing a substrate are provided. In some embodiments, a method of processing a substrate having a first layer may include disposing a substrate atop a substrate support in a lower processing volume of a process chamber beneath an ion shield having a bias power applied thereto, the ion shield comprising a substantially flat member supported parallel to the substrate support, and a plurality of apertures formed through the flat member, wherein the ratio of the aperture diameter to the thickness flat member ranges from about 10:1-1:10; flowing a process gas into an upper processing volume above the ion shield; forming a plasma from the process gas within the upper processing volume; treating the first layer with neutral radicals that pass through the ion shield; and heating the substrate to a temperature of up to about 550 degrees Celsius while treating the first layer.
    Type: Application
    Filed: May 22, 2015
    Publication date: November 19, 2015
    Inventors: JEFFREY TOBIN, BERNARD L. HWANG, CANFENG LAI, LARA HAWRYLCHAK, WEI LIU, JOHANES SWENBERG
  • Publication number: 20150329966
    Abstract: Embodiments described herein relate to a showerhead having a reflector plate with a gas injection insert for radially distributing gas. In one embodiment, a showerhead assembly includes a reflector plate and a gas injection insert. The reflector plate includes at least one gas injection port. The gas injection insert is disposed in the reflector plate, and includes a plurality of apertures. The gas injection insert also includes a baffle plate disposed in the gas injection insert, wherein the baffle plate also includes a plurality of apertures. A first plenum is formed between a first portion of the baffle plate and the reflector plate, and a second plenum is formed between a second portion of the baffle plate and the reflector plate. The plurality of apertures of the gas injection insert and the plurality of apertures of the baffle plate are not axially aligned.
    Type: Application
    Filed: April 20, 2015
    Publication date: November 19, 2015
    Inventors: Kartik SHAH, Chaitanya A. PRASAD, Kevin Joseph BAUTISTA, Jeffrey TOBIN, Umesh M. KELKAR, Lara HAWRYLCHAK
  • Patent number: 9123511
    Abstract: Embodiments of the invention generally relate to a process kit for a semiconductor processing chamber, and a semiconductor processing chamber having a kit. More specifically, embodiments described herein relate to a process kit including a cover ring, a shield, and an isolator for use in a physical deposition chamber. The components of the process kit work alone and in combination to significantly reduce particle generation and stray plasmas. In comparison with existing multiple part shields, which provide an extended RF return path contributing to RF harmonics causing stray plasma outside the process cavity, the components of the process kit reduce the RF return path thus providing improved plasma containment in the interior processing region.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: September 1, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Donny Young, Lara Hawrylchak
  • Patent number: 9096926
    Abstract: Embodiments of the invention generally provide a process kit for use in a physical deposition chamber (PVD) chamber. In one embodiment, the process kit provides adjustable process spacing, centering between the cover ring and the shield, and controlled gas flow between the cover ring and the shield contributing to uniform gas distribution, which promotes greater process uniformity and repeatability along with longer chamber component service life.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: August 4, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lara Hawrylchak, Kirankumar Savandaiah
  • Publication number: 20150206777
    Abstract: Methods and apparatus for improving selective oxidation against metals in a process chamber are provided herein. In some embodiments, a method of oxidizing a first surface of a substrate disposed in a process chamber having a processing volume defined by one or more chamber walls may include exposing the substrate to an oxidizing gas to oxidize the first surface; and actively heating at least one of the one or more chamber walls to increase a temperature of the one or more chamber walls to a first temperature of at least the dew point of water while exposing the substrate to the oxidizing gas.
    Type: Application
    Filed: March 30, 2015
    Publication date: July 23, 2015
    Inventors: AGUS TJANDRA, CHRISTOPHER S. OLSEN, JOHANES SWENBERG, LARA HAWRYLCHAK
  • Patent number: D790039
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: June 20, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lara Hawrylchak, Kong Lung Samuel Chan, Aaron Miller