Patents by Inventor Larry Wang

Larry Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6239031
    Abstract: Accurate photolighographic processing is achieved employing a stepper global alignment structure enabling formation thereon of a substantially transparent layer having a substantially planar upper surface. Embodiments include a set of global alignment marks comprising spaced apart trenches, each trench segmented into a plurality of narrow trenches spaced apart by uprights and forming a dummy topographical area of narrow trenches surrounding the set of alignment marks. The segmented trenches and the dummy topographical area effectively provide a substantially uniform topography enabling deposition of a transparent layer without steps and effective local planarization. Since the upper surface of the transparent layer is substantially planar, layers of material deposited on the transparent layer during subsequent processing also have a substantially planar upper surface, thereby enabling transmission of the signal produced by the alignment marks to the stepper with minimal distortion.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: May 29, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Nick Kepler, Olov Karlsson, Larry Wang, Basab Bandyopadhyah, Effiong Ibok, Christopher F. Lyons
  • Patent number: 6238986
    Abstract: High integrity shallow source/drain junctions are formed employing cobalt silicide contacts. A layer of cobalt and a cap layer of titanium or titanium nitride are deposited on a substrate above intended source/drain regions, followed by silicidation. Embodiments include low-temperature rapid thermal annealing to form a high-resistivity phase cobalt silicide, removing the cap layer, depositing a doped film on the first phase cobalt silicide, and heating, as by high-temperature rapid thermal annealing, to form a low-resistance cobalt silicide during which impurities from the doped film diffuse through the cobalt silicide into the substrate to form source/drain regions having junctions extending into the substrate a constant depth below the cobalt silicide/silicon substrate interface. In another embodiment, impurities are diffused from the doped film to form source/drain regions and self-aligned junctions following formation of the low-resistance phase cobalt silicide.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: May 29, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Nick Kepler, Karsten Wieczorek, Larry Wang, Paul Raymond Besser
  • Patent number: 6171962
    Abstract: An insulated trench isolation structure with large and small trenches of differing widths is formed in a semiconductor substrate without a planarization mask or etch. Embodiments include forming trenches and refilling them with an insulating material which also covers the substrate surface, followed by polishing to remove an upper portion of the insulating material and to planarize the insulating material above the small trenches. A second layer of insulating material is then deposited to fill seams in the insulating material above the small trenches and to fill steps in the insulating material above the large trenches. The insulating material is then planarized.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: January 9, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Olov Karlsson, Christopher F. Lyons, Basab Bandyopadhyay, Nick Kepler, Larry Wang, Effiong Ibok
  • Patent number: 6169005
    Abstract: High integrity ultra-shallow source/drain junctions are formed employing cobalt silicide contacts. These are formed by depositing a layer of cobalt on a substrate above intended source/drain regions, and depositing a doped amorphous silicon film on the cobalt. Silicidation, as by rapid thermal annealing, is performed to form a low-resistance cobalt suicide while consuming the amorphous silicon film and diffusing impurities from the doped amorphous silicon film through the cobalt silicide into the substrate. The diffusion of the impurities forms shallow junctions extending into the substrate a substantially constant depth below the cobalt silicide/silicon substrate interface.
    Type: Grant
    Filed: May 26, 1999
    Date of Patent: January 2, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Nick Kepler, Karsten Wieczorek, Larry Wang, Paul Raymond Besser
  • Patent number: 6162699
    Abstract: A method for effectively generating limited trench width isolation structures without incurring the susceptibility to dishing problems to produce high quality ICs employs a computer to generate data representing a trench isolation mask capable of being used to etch a limited trench width isolation structure about the perimeter of active region layers, polygate layers, and Local Interconnect (LI) layers. Once the various layers are defined using data on the computer and configured such that chip real estate is maximized, then the boundaries are combined using, for example, logical OR operators to produce data representing an overall composite layer. Once the data representing the composite layer is determined, the data is expanded evenly outward in all horizontal directions by a predetermined amount, .lambda., to produce data representing a preliminary expanded region.
    Type: Grant
    Filed: October 29, 1998
    Date of Patent: December 19, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Larry Wang, Nick Kepler, Olov Karlsson, Basab Bandyopadhyay, Effiong Ibok, Christopher F. Lyons
  • Patent number: 6162689
    Abstract: High integrity ultra-shallow source/drain junctions are formed employing cobalt silicide contacts. Emdodiments include forming field oxide regions, gates, spacers, and lightly doped implants, and then depositing a layer of oxide on a substrate. The oxide layer is masked to protect portions of the oxide layer located near the gate, where it is desired to have a shallow junction, then etched to expose portions of the intended source/drain regions where the silicided contacts are to be formed. A high-dosage source/drain implant is thereafter carried out to form deep source/drain junctions with the substrate where the oxide layer has been etched away, and to form shallower junctions near the gates, where the implant must travel through the oxide layer before reaching the substrate. A layer of cobalt is thereafter deposited and silicidation is performed to form metal silicide contacts over only the deep source/drain junctions, while the cobalt on the oxide layer (i.e.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: December 19, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Nick Kepler, Karsten Wieczorek, Larry Wang, Paul Raymond Besser
  • Patent number: 6150243
    Abstract: Self-aligned, ultra-shallow, heavily-doped source and drain regions of a MOS device are formed by implanting dopant containing ions in a dielectric layer formed on metal silicide layer portions on regions of a silicon-containing substrate where source and drain regions are to be formed in a silicon-containing substrate. Thermal treatment of the implanted dielectric layer results in out-diffusion of dopant through the metal silicide layer and into the region of the silicon-containing substrate immediately below the metal silicide layer portions, thereby forming heavily doped source and drain regions having an ultra-shallow junction spaced apart from the metal silicide/silicon substrate interface by a substantially uniform distance.
    Type: Grant
    Filed: November 5, 1998
    Date of Patent: November 21, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Karsten Wieczorek, Nick Kepler, Larry Wang, Paul R. Besser
  • Patent number: 6143624
    Abstract: An insulated trench isolation structure is formed by ion implanting impurities proximate the trench edges to enhance the silicon oxidation rate and, hence, increase the thickness of the resulting oxide at the trench edges. Embodiments include masking and etching a barrier nitride layer, forming protective spacers on portions of the substrate corresponding to subsequently formed trench edges, etching the trench, removing the protective spacers, ion implanting impurities into those portions of the substrate previously covered by the protective spacers, and then growing an oxide liner. The resulting oxide formed on the trench edges is thick due to the enhanced silicon oxidation rate, thereby avoiding overlap of a subsequently deposited polysilicon layer and breakdown problems attendant upon a thinned gate oxide at the trench edges.
    Type: Grant
    Filed: October 14, 1998
    Date of Patent: November 7, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Nick Kepler, Olov Karlsson, Larry Wang, Basab Bandyopadhyay, Effiong Ibok, Christopher F. Lyons
  • Patent number: 6130467
    Abstract: An insulated trench isolation structure is formed in a semiconductor substrate with an oxide or nitride spacer overlying and protecting a portion of a pad oxide layer at the trench edge such that the pad oxide layer acts as part of the gate oxide layer. Embodiments include providing a step between the trench fill and the pad oxide layer and forming the protective spacer thereon. The protective spacer protects the underlying portion of the pad oxide layer at the trench edge during pad oxide removal prior to forming a gate oxide. Therefore, it is only necessary to grow the gate oxide on the main surface of the substrate, not at the trench edges. The gate oxide can then be formed uniformly thin, while the remaining pad oxide at the trench edges is relatively thick.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: October 10, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Basab Bandyopadhyay, Nick Kepler, Olov Karlsson, Larry Wang, Effiong Ibok, Christopher F. Lyons
  • Patent number: 6124183
    Abstract: An insulated trench isolation structure with large and small trenches of differing widths is formed in a semiconductor substrate using a simplified reverse source/drain planarization mask. Embodiments include forming trenches and refilling them with an insulating material which also covers a main surface of the substrate, polishing to remove an upper portion of the insulating material and to planarize the insulating material above the small trenches, furnace annealing to densify and strengthen the remaining insulating material, masking the insulating material above the large trenches, isotropically etching the insulating material, and polishing to planarize the insulating material. Since the insulating material is partially planarized and strengthened prior to etching, etching can be carried out after the formation of a relatively simple planarization mask over only the large trenches, and not the small trenches.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: September 26, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Olov Karlsson, Christopher F. Lyons, Basab Bandyopadhyay, Nick Kepler, Larry Wang, Effiong Ibok
  • Patent number: 6100145
    Abstract: High integrity ultra-shallow source/drain junctions are formed employing cobalt silicide contacts. Field oxide regions, gates, spacers, and source/drain implants are initially formed. A layer of silicon is then deposited. A protective non-contuctive film is then formed and anisotropically etched to expose the silicon layer on the source/drain regions and the top surfaces of the gates, and to form protective spacers on the edges of the field oxide regions and on the side surfaces of the gates. A layer of cobalt is thereafter deposited and silicidation is performed, as by rapid thermal annealing, to form a low-resistance cobalt silicide while consuming the silicon film. The consumption of the silicon film during silicidation results in less consumption of substrate silicon, thereby enabling the formation of ultra-shallow source/drain junctions without junction leakage, allowing the formation of cobalt silicide contacts at optimum thickness and facilitating reliable device scaling.
    Type: Grant
    Filed: November 5, 1998
    Date of Patent: August 8, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Nick Kepler, Karsten Wieczorek, Larry Wang, Paul Raymond Besser
  • Patent number: 6096599
    Abstract: High integrity shallow source/drain junctions are formed employing cobalt silicide contacts. Embodiments include depositing a layer of cobalt on a substrate above intended source/drain regions, depositing a cap layer of titanium or titanium nitride on the cobalt, depositing a doped film on the cap layer, and performing silicidation, as by rapid thermal annealing, to form a low-resistivity cobalt silicide and to diffuse impurities from the doped film through the cobalt silicide into the substrate to form a junction extending into the substrate a constant depth below the cobalt silicide interface. The formation of source/drain junctions self-aligned to the cobalt silicide/silicon interface prevents junction leakage while allowing the formation of cobalt silicide contacts at optimum thickness, thereby facilitating reliable device scaling.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: August 1, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Nick Kepler, Karsten Wieczorek, Larry Wang, Paul Raymond Besser
  • Patent number: 6090713
    Abstract: An insulated trench isolation structure with large and small trenches of differing widths is formed in a semiconductor substrate using a simplified reverse source/drain planarization mask. Embodiments include forming trenches and refilling them with an insulating material which also covers the substrate surface, polishing to remove an upper portion of the insulating material and to planarize the insulating material above the small trenches, depositing a second, thin layer of insulating material filling seams in the insulating material above the small trenches, masking the insulating material above the large trenches, isotropically etching, and polishing to planarize the insulating material. Since the insulating material is partially planarized and the seams over the small trenches are filled, etching can be carried out after the formation of a relatively simple planarization mask over only the large trenches, and not the small trenches.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: July 18, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Olov Karlsson, Christopher F. Lyons, Basab Bandyophadhyay, Nick Kepler, Larry Wang, Effiong Ibok
  • Patent number: 6090712
    Abstract: An insulated trench isolation structure is formed in a semiconductor substrate omitting a barrier nitride polish stop layer while avoiding substrate damage, thereby simplifying trench formation and improving planarity. After trench fill, polishing is conducted to effect substantial planarization without exposing the substrate surface, thereby avoiding substrate damage. Etching is then conducted to expose the substrate surface. The omission of the barrier nitride polish stop avoids generation of a topographical step at the substrate/trench fill interface, thereby enhancing the accuracy of subsequent photolithographic techniques in forming features with minimal dimensions.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: July 18, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christopher F. Lyons, Basab Bandyopadhyay, Nick Kepler, Olov Karlsson, Larry Wang, Effiong Obok
  • Patent number: 6074927
    Abstract: A shallow trench isolation structure is formed which enables the growth of a high quality gate oxide at the trench edges and protects the field oxide from gouging during post-gate processing, such as during the local interconnect etch, thereby allowing the formation of high-quality implanted junctions. Embodiments include forming a photoresist mask directly on a pad oxide layer which, in turn, is formed on a main surface of a semiconductor substrate or an epitaxial layer on a semiconductor substrate. After masking, the substrate is etched to form a trench, an oxide liner is grown in the trench surface, and a polish stop layer is deposited in the trench on the oxide liner and on the pad oxide layer. The polish stop layer is then masked to the trench edges, and the polish stop in the trench is anisotropically etched, to remove the polish stop at the bottom of the trenches leaving a portion overlying the side surfaces and edges of the trench on the oxide liner.
    Type: Grant
    Filed: June 1, 1998
    Date of Patent: June 13, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Nick Kepler, Basab Bandyopadhyay, Olov Karlsson, Larry Wang, Effiong Ibok, Christopher F. Lyons
  • Patent number: 6037671
    Abstract: Accurate photolighographic processing is achieved employing a stepper global alignment structure enabling formation thereon of a substantially transparent layer having a substantially planar upper surface. Embodiments include a set of global alignment marks comprising spaced apart trenches, each trench segmented into a plurality of narrow trenches spaced apart by uprights and forming a dummy topographical area of narrow trenches surrounding the set of alignment marks. The segmented trenches and the dummy topographical area effectively provide a substantially uniform topography enabling deposition of a transparent layer without steps and effective local planarization. Since the upper surface of the transparent layer is substantially planar, layers of material deposited on the transparent layer during subsequent processing also have a substantially planar upper surface, thereby enabling transmission of the signal produced by the alignment marks to the stepper with minimal distortion.
    Type: Grant
    Filed: November 3, 1998
    Date of Patent: March 14, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Nick Kepler, Olov Karlsson, Larry Wang, Basab Bandyopadhyay, Effiong Ibok, Christopher F. Lyons
  • Patent number: 5970362
    Abstract: An insulated trench isolation structure is formed in a semiconductor substrate omitting a barrier nitride polish stop layer, thereby simplifying the formation of the trench isolating structure, and enabling the substrate to be polished substantially flush with the trench fill. The planar trench fill-substrate interface avoids additional topography, thereby facilitating application of, and enhancing the accuracy of, photolithographic techniques in forming features with minimal dimensions.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: October 19, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christopher F. Lyons, Basab Bandyopadhyay, Nick Kepler, Olov Karlsson, Larry Wang, Effiong Ibok
  • Patent number: 5970363
    Abstract: A shallow trench isolation structure is formed which enables the growth of a high quality gate oxide at the trench edges. Embodiments include forming a photoresist mask directly on a pad oxide layer which, in turn, is formed on a main surface of a semiconductor substrate or an epitaxial layer on a semiconductor substrate. After masking, the substrate is etched to form a trench, an oxide liner is grown in the trench surface, and a polish stop layer is deposited over the oxide liner and the pad oxide layer. The polish stop layer is then masked to the trench edges, and the polish stop in the trench etched away. The trench is then filled with an insulating material, the insulating material is planarized, and the polish stop is removed by etching. Thus, the oxide liner is allowed to grow on the trench edges without the restraint of a polish stop, resulting in a thick, rounded oxide on the trench edges. Additionally, no polish stop layer remains in the trench to cause unwanted electrical effects.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: October 19, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Nick Kepler, Olov Karlsson, Larry Wang, Basab Bandyopadhyay, Effiong Ibok, Christopher F. Lyons
  • Patent number: 5930645
    Abstract: An insulated trench isolation structure is formed in a semiconductor substrate using a thin amorphous silicon or polysilicon polish stop layer by adding a reflectance compensation layer on the polish stop layer. As a result, the topological step between the main surface of the substrate and the uppermost surface of the trench fill is reduced, thereby facilitating the application and enhancing the accuracy of photolithographic techniques in forming features with minimal dimensions.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: July 27, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christopher F. Lyons, Basab Bandyopadhyay, Nick Kepler, Olov Karlsson, Larry Wang, Effiong Ibok
  • Patent number: 5878332
    Abstract: An RF transceiver operable in two separate frequency bands has transmitter and receiver elements with broadband components to provide a flat frequency response across the two separate operating frequency bands. The broadband transmitting and receiving elements are utilized with other narrow band components which are designed for operating in either the first frequency band or the second frequency band. The use of common components for operating in both frequency bands reduces part count and cost along with reduced size and weight.
    Type: Grant
    Filed: February 7, 1997
    Date of Patent: March 2, 1999
    Assignee: EIC Enterprises Corporation
    Inventors: Nanlei Larry Wang, Ronald Patrick Green