Patents by Inventor Lars K. Nielsen

Lars K. Nielsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7228036
    Abstract: An adjustable tether assembly for a fiber optic distribution cable includes a tether cable and an overmolded housing secured at the end of the tether cable having at least one connector port. The tether assembly is attached to the distribution cable such that the position of the connector port is adjustable along the length of the distribution cable for mitigating differences between the pre-engineered span length distance and the actual span length distance following installation of the distribution cable. A method for mitigating a span length measurement difference in a pre-engineered fiber optic communications network is provided that includes optically connecting an adjustable tether assembly at a mid-span access location of a fiber optic distribution cable and positioning a housing secured at the free end of a tether cable having at least one connector port at a desired location in the network to compensate for the span length measurement difference.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: June 5, 2007
    Assignee: Corning Cable Systems LLC
    Inventors: Robert B. Elkins, II, Dennis M. Knecht, James P. Luther, Lars K. Nielsen, Thomas Theuerkorn
  • Patent number: 7197214
    Abstract: A method of laying an at least partially buried fiber optic cable includes placing a fiber optic cable with at least one associated alternating electromagnetic field emitting locating transponder (AEFELT) underground such that at least one AEFELT is buried underground.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: March 27, 2007
    Assignee: Corning Cable Systems LLC
    Inventors: Robert B. Elkins, II, Lars K. Nielsen, James P. Luther, Thomas Theuerkorn, William C. Hurley, William S. Jackman, Michael J. Ott
  • Patent number: 7184633
    Abstract: A factory-manufactured, preterminated fiber optic distribution cable having at least one predetermined access location for providing access to at least one preterminated optical fiber. A preterminated fiber optic distribution cable comprising at least one buffer tube comprising at least one optical fiber, a buffer tube transition piece operable for transitioning the at least one optical fiber from the at least one buffer tube into at least one protective tube, a C-shaped molded member defining a longitudinally extending optical fiber guide channel operable for storing a length of the at least one preterminated optical fiber and a protective means. A method of mid-span accessing at least one optical fiber from a fiber optic distribution cable. A buffer tube transition piece operable for transitioning a plurality of preterminated optical fibers from a buffer tube into protective tubing.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: February 27, 2007
    Inventors: Terry L. Cooke, John B. Johnson, Dennis M. Knecht, James P. Luther, Lars K. Nielsen
  • Patent number: 7155093
    Abstract: A fiber optic distribution cable assembly having at least one factory-prepared mid-span access location for accessing and terminating optical fibers of the distribution cable includes a tether containing at least one optical fiber optically connected to an optical fiber terminated from the distribution cable and an overmolded body encapsulating the distribution cable and a portion of the tether to form the mid-span access location. The mid-span access location is provided with a preferential bend along an axis that is common to the distribution cable and the tether by a strength member positioned within the overmolded body and/or the overmolded body having a geometrical configuration that promotes bending along the common axis. The preferential bend reduces any path length differences between terminated optical fibers routed substantially on the common axis and optical fibers remaining within the distribution cable induced by bending, thereby preventing breakage of the terminated optical fibers.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: December 26, 2006
    Assignee: Corning Cable Systems LLC
    Inventors: Robert B. Elkins, II, Lars K. Nielsen, James P. Luther, Thomas Theuerkom
  • Patent number: 7127143
    Abstract: A fiber optic distribution cable assembly includes a distribution cable having at least one predetermined mid-span access location and a tether for mitigating cable length errors at the mid-span access location in a pre-engineered fiber optic communications network. At least one optical fiber of the distribution cable is accessed at the mid-span access location and optically connected to an optical fiber disposed within the tether. Preferably, the first end of the tether is attached to the distribution cable by overmolding the mid-span access location with a flexible encapsulant material. The end of the optical fiber of the tether may be splice-ready or connectorized at the second end of the tether and protected within a crush resistant tube. Alternatively, the second end of the tether may terminate in an optical connection terminal defining at least one optical connection node, or may terminate in a linear chain of articulated optical connection nodes.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: October 24, 2006
    Assignee: Corning Cable Systems LLC
    Inventors: Robert B. Elkins, II, James P. Luther, Lars K. Nielsen, Thomas Theuerkorn
  • Patent number: 7088893
    Abstract: A factory-prepared preterminated and pre-connectorized fiber optic distribution cable having at least one mid-span access location for providing access to a plurality of preterminated optical fibers pre-connectorized with a multi-fiber connector is provided. Also provided is a method of forming a pre-connectorized fiber optic distribution cable by terminating and pre-connectorizing a predetermined number of the plurality of optical fibers of the cable to create a pre-connectorized mid-span access location. The fiber optic distribution cable provides a low profile mid-span access location that is sufficiently flexible to be installed through relatively small-diameter buried conduits and over aerial installation sheave wheels and pulleys without violating the minimum bend radius of the cable or the optical fibers.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: August 8, 2006
    Assignee: Corning Cable Systems LLC
    Inventors: Terry L. Cooke, Robert B. Elkins, II, John B. Johnson, Dennis M. Knecht, James P. Luther, Lars K. Nielsen
  • Patent number: 7077576
    Abstract: A fiber optic connector includes a multifiber ferrule and at least one force centering element for applying a biasing force to the ferrule in the longitudinal direction without introducing a moment about a lateral axis. The connector further includes a coil spring for exerting the biasing force and a spring seat disposed between the coil spring and the ferrule. The rearward portion or the forward portion of the spring seat may be provided with a pair of outwardly extending protrusions that are laterally spaced apart to transfer the biasing force to the ferrule. Alternatively, the forward portion of the spring seat or the rear face of the ferrule may define a convex surface. Alternatively, the ferrule defines a convex surface in the direction of a first lateral axis and the spring seat defines a convex surface in the direction of a second lateral axis perpendicular to the first lateral axis.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: July 18, 2006
    Assignee: Corning Cable Systems LLC
    Inventors: James P. Luther, Terry L. Cooke, Michael deJong, Robert B. Elkins, II, Lars K. Nielsen, Thomas Theuerkorn, Tory A. Klavuhn
  • Patent number: 7016592
    Abstract: A factory prepared fiber optic distribution cable has at least one predetermined access location for providing access to at least one pre-connectorized optical fiber. The fiber optic distribution cable includes at least one preterminated optical fiber withdrawn from a tubular body at the access location, a connector attached to the preterminated optical fiber, a transition piece for transitioning the preterminated optical fiber from the tubular body into a protective tube, and a protective shell encapsulating the access location for protecting the pre-connectorized optical fiber.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: March 21, 2006
    Assignee: Corning Cable Systems LLC
    Inventors: Robert B. Elkins, II, Terry L. Cooke, John B. Johnson, Dennis M. Knecht, James P. Luther, Lars K. Nielsen
  • Patent number: 7006739
    Abstract: A factory prepared fiber optic distribution cable has at least one predetermined access location for providing access to at least one pre-connectorized optical fiber. The fiber optic distribution cable includes at least one preterminated optical fiber withdrawn from a tubular body at the access location, a connector attached to the preterminated optical fiber, a transition piece for transitioning the preterminated optical fiber from the tubular body into a protective tube, and a protective shell encapsulating the access location for protecting the pre-connectorized optical fiber.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: February 28, 2006
    Assignee: Corning Cable Systems LLC
    Inventors: Robert B. Elkins, II, John B. Johnson, Terry L. Cooke, Dennis M. Knecht, James P. Luther, Lars K. Nielsen
  • Patent number: 6856748
    Abstract: An interconnection enclosure comprising at least one connector port operable for receiving a connector pair and a preterminated optical connector received in the at least one connector port, wherein the preterminated optical connector is adapted to be withdrawn from the exterior of the enclosure without entering the enclosure. The enclosure further comprising a tether means, a bend radius control means and a sealing means. An interconnection enclosure comprised of two halves held together by a fastening means, the enclosure defining an end wall and defining at least one connector port opening through the end wall for receiving a preterminated optical connector, the enclosure housing further defining an opening for receiving a distribution cable extending therethrough, wherein the preterminated optical connector is adapted to be withdrawn from the exterior of the enclosure without entering the enclosure.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: February 15, 2005
    Assignee: Corning Cable Systems LLC
    Inventors: Robert B. Elkins, II, James P. Luther, Lars K. Nielsen, Otto I. Szentesi, Hieu V. Tran
  • Publication number: 20030063869
    Abstract: An optical waveguide module attachment includes a cushioning element and a body. The cushioning element is configured for positioning about at least one optical waveguide, thereby forming a clamping portion for protecting the at least one optical waveguide from clamping forces applied by the body. The body has a passage therethrough with predetermined dimensions for passing a clamping portion of at least one optical waveguide therein. The body can be crimped thereby applying clamping forces to the clamping portion for securing the at least one optical fiber thereto. In other embodiments, the clamping forces can be applied to the body using a clamping portion or element.
    Type: Application
    Filed: November 6, 2002
    Publication date: April 3, 2003
    Inventors: Robert B. Elkins, Lars K. Nielsen