Patents by Inventor Lawrence A. Smith, Jr.

Lawrence A. Smith, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7126038
    Abstract: An improvement in the alkylation of olefins with isoalkanes in the presence of sulfuric acid wherein the sulfuric acid is removed from the product by a mechanical coalescer means prior to fractionation. No water wash or caustic treatment is required. Any sulfonates or sulfonic esters are removed by hydrodesulfurization or decomposition catalyst in a separate reactor or in either the deisobutanizer (DIB) or debutanizer (DB) column.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: October 24, 2006
    Assignee: Catalytic Distillation Technologies
    Inventor: Lawrence A. Smith, Jr.
  • Patent number: 7119244
    Abstract: A process for the removal of organic sulfur compounds, primarily oxygenated organic compounds, such as sulfates and sulfonic esters from a hydrocarbon liquid is disclosed which comprises contacting the hydrocarbon liquid with a coalescer comprising a mesh material which has been wetted by sulfuric acid. The hydrocarbon liquid may be the product from a sulfuric acid catalyzed alkylation process and contain sufficient sulfuric acid to remove the sulfates and sulfonic esters. Sulfuric acid may be added to the coalescer vessel counter current to the hydrocarbon liquid to improve the efficiency of the contacting and removal.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: October 10, 2006
    Assignee: Catalytic Distillation Technologies
    Inventor: Lawrence A. Smith, Jr.
  • Patent number: 7091252
    Abstract: Bubble columns fractionate with vapor-liquid mass transfer efficiencies approaching that of distillation towers when vapor velocities in excess of 50% of jet flood are used. If the vapor velocities are pushed above about 70% of jet flood then the distillation performance of a given column packing becomes similar for both liquid continuous operation (bubble column mode) and vapor continuous operation (ordinary distillation tower mode).
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: August 15, 2006
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Mitchell E. Loescher
  • Patent number: 6995296
    Abstract: A process for the alkylation of alkane with olefin or olefin precursor such as an oligomer of tertiary olefin comprising contacting a liquid system comprising acid catalyst, isoparaffin and olefin in concurrent downflow into contact in a reaction zone with a disperser mesh under conditions of temperature and pressure to react said isoparaffin and said olefin to produce an alkylate product is disclosed. Preferably, the liquid system is maintained at about its boiling point in the reaction zone. Unexpectedly, the olefin oligomers have been found to function as olefin precursors and not as olefins in the reaction. Thus, for example, a cold acid alkylation using an oligomer of isobutene (principally dimer and trimer) with isobutane produces isooctane with the isobutane reacting with the constituent isobutene units of the oligomers on a molar basis. The product isooctane is essentially the same as that produced in the conventional cold acid process.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: February 7, 2006
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Mitchell E. Loescher, John R. Adams, Abraham P. Gelbein
  • Patent number: 6939994
    Abstract: Bisphenol-A (BPA) is efficiently produced from phenol and acetone via countercurrent and multistage contact with a solid acid catalyst in the presence of an agent that enhances the removal of water of reaction from the reaction zone. A preferred contacting device is a distillation column wherein the catalyst is contained within a distillation mass transfer structure. A preferred water removal agent is a C6 hydrocarbon, e.g., n-hexane. The column is configured with a reboiler, reflux condenser, and decanter as reflux drum. Phenol (in excess of the reaction stoichiometry) is fed to the column above the catalyst zone and acetone toward the bottom of the catalyst zone. Hexane is fed directly into the reboiler. Boilup is primarily hexane vapor which as it ascends the column removes water from the reaction zone in the vapor stream while the acetone is maintained within the reaction zone by dissolving in the descending phenol rich liquid stream.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: September 6, 2005
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Abraham P. Gelbein
  • Patent number: 6936742
    Abstract: A process for the production of diisobutene is disclosed wherein tertiary butyl alcohol is dehydrated to isobutene in a distillation column reactor containing an acid cation exchange resin catalyst in the form of catalytic distillation structure. The isobutene reacts with itself in the presence of the catalyst to form primarily diisobutene which is removed as bottoms from the distillation column reactor with the bulk of the water. Unreacted isobutene along with an azeotrope of water is removed as overheads with the water being separated and removed from the unreacted isobutene. A portion or all of the unreacted isobutene may be returned to the distillation column reactor as reflux.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: August 30, 2005
    Assignee: Catalytic Distillation Technologies
    Inventor: Lawrence A. Smith, Jr.
  • Patent number: 6881324
    Abstract: A process for the treatment of light naphtha hydrocarbon streams is disclosed wherein the mercaptans contained therein are reacted with diolefins simultaneous with fractionation into a light stream and a heavy stream. The heavy stream is then simultaneously treated at high temperatures and low pressures and fractionated. The naphtha is then stripped of the hydrogen sulfide in a final stripper.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: April 19, 2005
    Assignee: Catalytic Distillation Technologies
    Inventor: Lawrence A. Smith, Jr.
  • Patent number: 6867338
    Abstract: Acetylenes and dienes in a stream containing hydrogen, methane, C2-C6 olefins and paraffins, C2-C6 acetylenes and dienes, benzene, toluene, xylenes, and other C6+ components are hydrogenated in a downflow boiling point reactor wherein the heat of reaction is absorbed by the liquid in the reactor which produces a vapor. Besides the feed to the reactor there is a recirculating stream which is fed at a rate sufficient to ensure that the catalyst particles within the reactor are wetted. A third stream, which is taken from a downstream distillation column, is fed to provide the make up mass corresponding to the mass evaporated in the reactor. The composition of the this third stream controls the steady state composition of the liquid flowing through the reactor.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: March 15, 2005
    Assignee: Catalytic Distillation Technologies
    Inventors: Abraham P. Gelbein, Lawrence A. Smith, Jr.
  • Patent number: 6858770
    Abstract: A process for the alkylation of alkane with olefin or olefin precursor such as an oligomer of tertiary olefin comprising contacting a liquid system comprising acid catalyst, isoparaffin and olefin in concurrent downflow into contact in a reaction zone with a disperser mesh under conditions of temperature and pressure to react said isoparaffin and said olefin to produce an alkylate product is disclosed. Preferably, the liquid system is maintained at about its boiling point in the reaction zone. Unexpectedly, the olefin oligomers have been found to function as olefin precursors and not as olefins in the reaction. Thus, for example, a cold acid alkylation using an oligomer of isobutene (principally dimer and trimer) with isobutane produces isooctane with the isobutane reacting with the constituent isobutene units of the oligomers on a molar basis. The product isooctane is essentially the same as that produced in the conventional cold acid process.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: February 22, 2005
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Mitchell E. Loescher, John R. Adams, Abraham P. Gelbein
  • Patent number: 6852902
    Abstract: An improvement in the alkylation of olefins with isoalkanes in the presence of sulfuric acid wherein the sulfuric acid is removed from the product by a mechanical coalescer means prior to fractionation. No water wash or caustic treatment is required. Any sulfonates or sulfonic esters are removed by hydrodesulfurization or decomposition catalyst in a separate reactor or in either the deisobutanizer (DIB) or debutanizer (DB) column.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: February 8, 2005
    Assignee: Catalytic Distillation Technologies
    Inventor: Lawrence A. Smith, Jr.
  • Patent number: 6824676
    Abstract: A process for concurrently fractionating and treating a full range naphtha stream. The full boiling range naphtha stream is first subjected to simultaneous thioetherification and splitting into a light boiling range naphtha, an intermediate boiling range naphtha and a heavy boiling range naphtha. The intermediate boiling range naphtha containing thiophene and thiophene boiling range mercaptans is passed on to a polishing hydrodesulfurization reactor where a low sulfur, low olefin gas oil is concurrently fed to the polishing reactor to insure that a liquid phase is present.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: November 30, 2004
    Assignee: Catalytic Distillation Technologies
    Inventors: Gary G. Podrebarac, Willibrord A. Groten, Lawrence A. Smith, Jr.
  • Patent number: 6774275
    Abstract: A method of operating a multi-phase downflow reactor so as to induce a pulsing flow regime is disclosed. The pulse may be induced by increasing the gas rate while maintaining the liquid rate until a pressure drop sufficient to induce the pulse flow is achieved. The method is particularly useful in the sulfuric acid catalyzed alkylation of olefins in a reactor packed with a stainless steel/polypropylene mesh.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: August 10, 2004
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., William M. Cross, Jr.
  • Patent number: 6583325
    Abstract: A process for the production of tertiary ethers from the reaction of isoolefins with lower alcohols, such as methanol, uses two distillation column reactors in series to maximize conversion, especially for isopentenes and isohexenes. The second distillation column reactor may be concurrently used as a C5 polishing reactor and a reactor for producing MTBE or ETBE from isobutene, for example.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: June 24, 2003
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Hugh M. Putman, Henry J. Semerak, Clifford S. Crossland
  • Patent number: 6495732
    Abstract: A process for the isomerization of mono-olefins in aliphatic hydrocarbon streams is carried out at 40 to 300° F. under low hydrogen partial pressure in the range of about 0.1 psi to less than 70 psi at 0 to 350 psig in a distillation column reactor containing a hydrogenation catalyst which serves as a component of a distillation structure, such as supported PdO encased in tubular wire mesh. Essentially no hydrogenation of the mono-olefins occurs.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: December 17, 2002
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Robert P. Arganbright, Edward M. Jones, Jr., Lawrence A. Smith, Jr., Gary R. Gildert
  • Patent number: 6413413
    Abstract: A process for hydrodesulfurization in which gasoline boiling range petroleum feed and hydrogen are contacted in a reactor with a fixed bed hydrodesulfurization catalyst at an WHSV of greater than 6, pressure of less than 300 psig and temperature of 300 to 700° F. wherein the pressure and temperature of the reactor are adjusted to maintain the reaction effluent at its boiling point and below it dew point whereby at least a portion but less than all of the reaction mixture is vaporized.
    Type: Grant
    Filed: December 29, 1999
    Date of Patent: July 2, 2002
    Assignee: Catalytic Distillation Technologies
    Inventor: Lawrence A. Smith, Jr.
  • Patent number: 6232509
    Abstract: A process for the separation and recovery of methyl tertiary butyl ether from mixed C4/C5 streams, such as resulting from the co-production of methyl tertiary butyl ether and tertiary amyl methyl ether from the reaction of methanol with isobutene and isoamylenes in a mixed C4/C5 stream. In a distillation column reactor the reaction is carried out concurrently with distillation of the products from the unreacted materials. In the distillation little or no MTBE is carried overhead with the unreacted C4's, C5's and methanol by controlling the methanol concentration in said column to maintain substantially a methanol/C5 azeotrope in the overheads.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: May 15, 2001
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Henry J. Semerak, Willibrord A. Groten
  • Patent number: 6169218
    Abstract: A process for the selective hydrogenation of the diolefins and acetylenic compounds in a olefin rich aliphatic hydrocarbon streams is disclosed wherein the selective hydrogenation is carried out at 40 to 300° F. under low hydrogen partial pressure in the range of about 0.1 psi to less than 70 psia at 0 to 350 psig in a distillation column reactor containing a hydrogenation catalyst which serves as a component of a distillation structure, such as supported PdO encased in tubular wire mesh. Essentially no hydrogenation of the olefins occurs.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: January 2, 2001
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Robert P. Arganbright, Edward M. Jones, Jr., Lawrence A. Smith, Jr., Gary R. Gildert
  • Patent number: 6015875
    Abstract: Acetals are produced from the reaction of aldehydes and alcohols, e.g. methylal by the reaction of methanol and formaldehyde, by the reaction in a reaction distillation column of the alcohol and aldehyde in the presence of a catalyst and the concurrent fractional distillation of the reaction mixture to separate the reaction products, water and acetal.
    Type: Grant
    Filed: August 11, 1998
    Date of Patent: January 18, 2000
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Robert P. Arganbright
  • Patent number: 6002058
    Abstract: A process for the alkylation of benzene contained in a mixed refinery stream is disclosed wherein the refinery stream is first subjected to hydrogenation of higher olefins prior to alkylation of the benzene with selected types and quantities of lower olefins. Streams containing sulfur compounds may be pretreated by hydrodesulfurization. All of the process steps are advantageously carried out in distillation column reactors to take advantage of that mode of operation.
    Type: Grant
    Filed: November 2, 1998
    Date of Patent: December 14, 1999
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Robert P. Arganbright, Lawrence A. Smith, Jr., John R. Adams
  • Patent number: 5894076
    Abstract: A process for the alkylation of benzene contained in a mixed refinery stream is disclosed wherein the refinery stream is first subjected to hydrogenation of higher olefins prior to alkylation of the benzene with selected types and quantities of lower olefins. Streams containing sulfur compounds may be pretreated by hydrodesulfurization. All of the process steps are advantageously carried out in distillation column reactors to take advantage of that mode of operation.
    Type: Grant
    Filed: May 12, 1997
    Date of Patent: April 13, 1999
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Robert P. Arganbright, Lawrence A. Smith, Jr., John R. Adams