Patents by Inventor Li Pan

Li Pan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220136386
    Abstract: A wellbore servicing tool. The wellbore servicing tool comprises a tool body, an electromagnetic transmitter coupled to the tool body, an electromagnetic receiver coupled to the tool body and spaced apart from the electromagnetic transmitter, wherein a portion of the tool body between the electromagnetic transmitter and the electromagnetic receiver defines a direct signal path between the electromagnetic transmitter and the electromagnetic receiver, and an absorbing material coupled to the tool body in the direct signal path between the electromagnetic transmitter and the electromagnetic receiver, proximate to the electromagnetic receiver.
    Type: Application
    Filed: November 2, 2020
    Publication date: May 5, 2022
    Inventors: Hsu Hsiang WU, Yijing FAN, Li PAN
  • Publication number: 20220128641
    Abstract: A method for acquiring magnetic resonance imaging data with respiratory motion compensation using one or more motion signals includes acquiring a plurality of gradient-delay-corrected radial readout views of a subject using a free-breathing multi-echo pulse sequence, and sampling a plurality of data points of the gradient-delay-corrected radial readout views to yield a self-gating signal. The self-gating signal is used to determine a plurality of respiratory motion states corresponding to the plurality of gradient-delay-corrected radial readout views. The respiratory motion states are used to correct respiratory motion bias in the gradient-delay-corrected radial readout views, thereby yielding gradient-delay-corrected and motion-compensated multi-echo data. One or more images are reconstructed using the gradient-delay-corrected and motion-compensated multi-echo data.
    Type: Application
    Filed: October 1, 2021
    Publication date: April 28, 2022
    Inventors: Xiaodong Zhong, Holden H. Wu, Vibhas S. Deshpande, Tess Armstrong, Li Pan, Marcel Dominik Nickel, Stephan Kannengiesser
  • Publication number: 20220127950
    Abstract: A method for enhancing a formation property image may include taking at least one set of formation property measurements with a borehole imaging device, arranging the at least one set of formation property measurements into a two-dimensional image with a buffer, feeding the two-dimensional image into a deep-learning neural network (DNN), and forming a corrected formation property image from the two-dimensional image. The method may further include inverting the at least one set of formation property measurements to form at least one set of inverted formation property measurements and arranging the at least one set of inverted formation property measurements into a two-dimensional image with a buffer.
    Type: Application
    Filed: October 22, 2020
    Publication date: April 28, 2022
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Li Pan, Ahmed Elsayed Fouda, Junwen Dai
  • Publication number: 20220118807
    Abstract: A wheeled vehicle includes a vehicle body, a vibration absorbing element, an auxiliary arm, a wheel, and a driving member. The vibration absorbing element includes a first end and a second end. The first end is fixed to the vehicle body. The auxiliary arm includes a connecting end and a free end. The connecting end is connected to the vehicle body. The free end is configured to swing relative to the connecting end. The free end is fixed to the second end. The wheel includes an axle, and the axle is pivotally connected to the free end. The driving member is fixed to the vehicle body and configured to drive the wheel.
    Type: Application
    Filed: January 8, 2021
    Publication date: April 21, 2022
    Inventors: Shih-Li Pan, Ssu-Chieh Kao, Jian-Rong Liao, Ching-Chih Tung, Chih-Ying Wu
  • Patent number: 11299978
    Abstract: System and methods for geosteering inversion are provided. A downhole tool's response along a path of a wellbore to be drilled through a formation is predicted over different stages of a downhole operation, based on each of a plurality of initial models of the formation. Each initial model represents a different number of formation layers over a specified range. The tool's actual response with respect to one or more formation parameters is determined, based on measurements obtained during a current stage of the operation. The actual response is compared with that predicted from each of the initial models. At least one of the models is selected as an inversion model, based on the comparison and a selection criterion. Inversion is performed for subsequent stages of the operation along the wellbore path, based on the selected model. The wellbore path is adjusted for the subsequent stages, based on the inversion results.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: April 12, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Rencheng Song, Li Pan, Hsu-Hsiang Wu
  • Publication number: 20220098972
    Abstract: Borehole images can be corrected using machine-learning models. For example, a system can train a machine-learning model based on a training dataset. The training dataset can include a first set of borehole images correlated to a second set of borehole images, where the second set of borehole images are less precise versions of the first set of borehole images. The system can then execute the trained machine-learning model in relation to an input borehole image to receive a corrected borehole image as output from the trained machine-learning model. The corrected borehole image can be a visually corrected version of the input borehole image. The system may then perform one or more operations based on the corrected borehole image, such as generating a graphical user interface that includes the corrected borehole image for display on a display device.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Inventors: Li Pan, Yijing Fan, Hsu-Hsiang Wu, Jin Ma
  • Publication number: 20220041755
    Abstract: The present disclosure provides an anti-biotin antibody, and provides an amino acid sequence encoding the CDRs of the antibody. Studies have shown that the antibody only reacts with a biotin conjugate or derivative, and does not react with free biotin. The present disclosure further provides applications of the antibody in, including but not limited to, ELISA, cell capture, sorting and enrichment, western blotting, flow cytometry, immunocytofluorescent staining, and immunohistochemistry. The anti-biotin antibody conjugated immunomagnetic beads can specifically and directly recognize a biotin labeled antigen, and do not bind to free biotin which is often presented in clinical samples and culture media. In addition, the anti-biotin antibody-conjugated magnetic beads or anti-biotin antibody-fluorescein provide an ideal solution for the isolation of specific cells, and can even enrich and separate target cells from samples rich in debris or other rare biological materials.
    Type: Application
    Filed: September 4, 2020
    Publication date: February 10, 2022
    Inventors: Mingzhen LI, Li PAN, Min HU, Hao LIU
  • Publication number: 20210363876
    Abstract: A method and system for determining a position of a second production wellbore. The method may comprise inducing a first current into a first conductive member with a first source, emitting a first magnetic field generated by the first current from the first conductive member into a formation, inducing a second current into a second conductive member with a second source, emitting a second magnetic field generated by the second current from the second conductive member into the formation, disposing an electromagnetic sensor system into the second production wellbore, recording the first magnetic field with the at least one sensor from the formation, and recording the second magnetic field with the at least one sensor from the formation. The system may comprise a first source, an electromagnetic sensor system, at least one sensor and an information handling system configured to determine the position of the second production wellbore.
    Type: Application
    Filed: August 3, 2021
    Publication date: November 25, 2021
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Yijing Fan, Hsu-Hsiang Wu, Li Pan
  • Publication number: 20210363870
    Abstract: An apparatus, method, and system for multi-well ranging and planning of a second injector well in the presence of a first injector well in close proximity to a producer well. The method includes generating a three-well forward simulation model using survey data for a producer well, survey data for a first injector well, survey data for a first section of a second injector well, a producer well casing property profile, and a formation resistivity parameter. The method provides for determining the offset between the true magnetic sensor position in the BHA and a planned depth position. The method determines ranging distance and direction of the drilling well to target well using the offset between the true magnetic sensor position and the first planned depth position. The method helps to adjust directional drilling parameter to achieve constant ranging distance between drilling well and target well.
    Type: Application
    Filed: March 26, 2018
    Publication date: November 25, 2021
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Yijing FAN, Burkay DONDERICI, Hsu-Hsiang WU, Li PAN
  • Publication number: 20210355806
    Abstract: A method includes generating a ranging model of a drilling wellbore to be drilled and generating a predicted signal along measured depths of the drilling wellbore based on the ranging model. The method includes performing the following operations until the drilling wellbore has been drilled to a defined depth. The following operations include drilling, with a drill string, the drilling wellbore to an increment of the defined depth and detecting, by a sensor positioned on the drill string, an electromagnetic field emanating from a target wellbore. The following operations include determining ranging measurements to the target wellbore at the increment based on the electromagnetic field and calibrating the predicted signal based on the ranging measurements. The following operations include determining ranging accuracy for all deeper depths in the wellbore and making drilling decisions or adjusting drilling operations based on the predicted ranging accuracy for deeper depths.
    Type: Application
    Filed: March 5, 2019
    Publication date: November 18, 2021
    Inventors: Yijing Fan, Hsu-Hsiang Wu, Li Pan
  • Patent number: 11175366
    Abstract: A method for acquiring magnetic resonance imaging data with respiratory motion compensation using one or more motion signals includes acquiring a plurality of gradient-delay-corrected radial readout views of a subject using a free-breathing multi-echo pulse sequence, and sampling a plurality of data points of the gradient-delay-corrected radial readout views to yield a self-gating signal. The self-gating signal is used to determine a plurality of respiratory motion states corresponding to the plurality of gradient-delay-corrected radial readout views. The respiratory motion states are used to correct respiratory motion bias in the gradient-delay-corrected radial readout views, thereby yielding gradient-delay-corrected and motion-compensated multi-echo data. One or more images are reconstructed using the gradient-delay-corrected and motion-compensated multi-echo data.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: November 16, 2021
    Assignees: Siemens Healthcare GmbH, The Regents of the University of California
    Inventors: Xiaodong Zhong, Holden H. Wu, Vibhas S. Deshpande, Tess Armstrong, Li Pan, Marcel Dominik Nickel, Stephan Kannengiesser
  • Publication number: 20210277773
    Abstract: Raw signal measurements can be received by sensors in a wellbore. Borehole effects can affect the raw signal measurements. The raw signal measurements can be converted into ratio signals having attenuation and phase shift. An apparent resistivity can be determined from the ratio signals. Mud resistivity can be determined based on apparent resistivity, at least part of the raw signal measurements, and the borehole size. A true resistivity can be determined based on the mud resistivity and at least part of the ratio signals. The raw signal measurements and the ratio signals can be updated based on the true resistivity. Steps can be repeated to determine a corrected true resistivity. Based on the true resistivity value and updated raw signal measurements and ratio signals, an operating characteristic of a well tool can be caused to be adjusted.
    Type: Application
    Filed: January 29, 2019
    Publication date: September 9, 2021
    Inventors: Yijing Fan, Jin Ma, Li Pan
  • Patent number: 11111776
    Abstract: A method and system for determining a position of a second production wellbore. The method may comprise inducing a first current into a first conductive member with a first source, emitting a first magnetic field generated by the first current from the first conductive member into a formation, inducing a second current into a second conductive member with a second source, emitting a second magnetic field generated by the second current from the second conductive member into the formation, disposing an electromagnetic sensor system into the second production wellbore, recording the first magnetic field with the at least one sensor from the formation, and recording the second magnetic field with the at least one sensor from the formation. The system may comprise a first source, an electromagnetic sensor system, at least one sensor and an information handling system configured to determine the position of the second production wellbore.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: September 7, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Yijing Fan, Hsu-Hsiang Wu, Li Pan
  • Patent number: 11035976
    Abstract: Numerical and/or semi-analytical methods are leveraged to decouple a complete set of nonzero electromagnetic field tensor components (118) from detected signal data (119). Nine nonzero components can serve as inputs for a three-dimensional inversion process to determine formation properties. A resistivity tool (100) containing at least one transmitter (111) and at least one receiver (108, 109) at tilted angles receives an electromagnetic signal throughout a rotation. A difference in the azimuthal positions of the transmitter(s) and receiver(s) during rotation of the resistivity tool can result in an azimuthal offset between resistivity tool subs. The components (118) are decoupled from the detected signal data (119) numerically or semi-analytically according to whether the azimuthal offset angle is known. If the azimuthal offset angle is known, the nine components are determined numerically through curve fitting.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: June 15, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Junsheng Hou, Michael S. Bittar, Yijing Fan, Li Pan, Jin Ma
  • Patent number: 11035981
    Abstract: A method for calibrating a resistivity-logging tool using air-hang calibration is provided. The method may include performing an air-hang measurement using the resistivity-logging tool and performing a first measurement decoupling operation on the air-hang measurement. The first measurement decoupling operation may include generating correcting factors based on a physical model and calculating an air-hang calibration matrix based on the correcting factors. Additionally, the method may include performing a formation measurement using the resistivity-logging tool and performing a second measurement decoupling operation on the formation measurement to generate a decoupled formation measurement matrix. Further, the method may include calibrating the resistivity-logging tool to generate a calibrated formation measurement matrix by subtracting the air-hang calibration matrix from the decoupled formation measurement matrix.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: June 15, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Li Pan, Hsu-Hsiang Wu, Yijing Fan
  • Patent number: 11015432
    Abstract: A method may comprise: inserting into a wellbore penetrating a subterranean formation a tool comprising: a transmitter sub assembly comprising a transmitter; and a receiver sub assembly comprising a receiver; generating an electromagnetic wave at the transmitter; propagating the electromagnetic wave through the subterranean formation; receiving the electromagnetic wave in the receiver; generating a response signal in the receiver; calculating a distance to a bed boundary position in a TVDp direction, wherein the TVDp direction is a direction where an angle between the TVDp direction and a tool axis is equal to a tool inclination from a true vertical direction (TVD), wherein TVD is a direction with respect to gravity; calculating a distance to bed boundary in a TST direction, wherein the TST direction is a true stratigraphic thickness direction in a direction towards a bed boundary; calculating a distance to bed boundary in a TVD direction; generating a formation characterization comprising a visual representa
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: May 25, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Li Pan, Hsu-Hsiang Wu
  • Patent number: 10996368
    Abstract: A system and method for electromagnetic measurements. The system may comprise an electromagnetic transmitter, wherein the electromagnetic transmitter is an antenna and is operable to transmit a low frequency electromagnetic field into a formation or a high frequency electromagnetic field into the formation. The system may further comprise an electromagnetic receiver, wherein the electromagnetic receiver is an antenna and is operable to record the high frequency electromagnetic field or the low frequency electromagnetic field. The method may comprise transmitting a high frequency electromagnetic field, recording a high frequency electromagnetic field, transmitting a low frequency electromagnetic field, recording a low frequency electromagnetic field, performing a shallow inversion on the low frequency electromagnetic field and the high frequency electromagnetic field to form a formation resistivity model, and running the deep inversion with the random initial guesses that have the misfit.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: May 4, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Weixin Dong, Hsu-Hsiang Wu, Li Pan
  • Patent number: 10968735
    Abstract: A telemetry and communication system and method for communication between a well production system and a well assist system. The system may comprise a well production system, which may comprise a telemetry sensor disposed in a production well below a highly conductive layer and a transmitter. The system may further comprise a well assist system comprising a sensor which is operable to receive information from the transmitter. A method for providing telemetry and communication may comprise determining a location of a well assist system for a well production system, deploying the well assist system to the location, disposing a sensor from the well assist system below a highly conductive layer, and receiving information with the sensor, the information being transmitted from a transmitter of the well production system disposed below the highly conductive layer.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: April 6, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Yijing Fan, Li Pan, Hsu-Hsiang Wu
  • Publication number: 20210079785
    Abstract: A method and system for determining a position of a second production wellbore. The method may comprise inducing a first current into a first conductive member with a first source, emitting a first magnetic field generated by the first current from the first conductive member into a formation, inducing a second current into a second conductive member with a second source, emitting a second magnetic field generated by the second current from the second conductive member into the formation, disposing an electromagnetic sensor system into the second production wellbore, recording the first magnetic field with the at least one sensor from the formation, and recording the second magnetic field with the at least one sensor from the formation. The system may comprise a first source, an electromagnetic sensor system, at least one sensor and an information handling system configured to determine the position of the second production wellbore.
    Type: Application
    Filed: November 30, 2018
    Publication date: March 18, 2021
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Yijing Fan, Hsu-Hsiang Wu, Li Pan
  • Patent number: 10948621
    Abstract: A dielectric logging tool for use in a borehole that penetrates a subsurface formation, includes: at least one wall-contacting face with one or more embedded microstrip antennas including a transmit antenna; an oscillator that supplies a transmit signal; a coherent receiver that measures the one or more scattering coefficients; and a processor that derives a formation property from the one or more scattering coefficients. The tool may be conveyed along a borehole, with the scattering coefficients and derived formation property values associated with tool position and orientation to provide a permittivity log.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: March 16, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Glenn Andrew Wilson, Luis San Martin, Li Pan, Burkay Donderici