Patents by Inventor Liesbet Lagae

Liesbet Lagae has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180188156
    Abstract: A sensor device for quantifying luminescent targets comprises a light source, a detector, a modulator, and a processor. The light source is adapted for exciting the luminescent target. The detector is adapted for detecting the luminescence of the luminescent target resulting in a measured signal which comprises a desired signal originating from the luminescent target and a background signal. The modulator is adapted for modulating a physical parameter resulting in a modulation of the desired signal which is different from the modulation of the background signal. The processor is configured to correlate the modulation of the physical parameter with the modulation of the desired signal and/or the modulation of the background signal.
    Type: Application
    Filed: June 30, 2016
    Publication date: July 5, 2018
    Applicant: IMEC VZW
    Inventors: Peter Peumans, Liesbet Lagae, Willem Van Roy, Tim Stakenborg, Pol Van Dorpe
  • Publication number: 20180172588
    Abstract: Sensor devices for quantifying luminescent targets are described herein. An example device comprises a light source for exciting the targets, thus generating luminescence signals and a detector for detecting these signals, resulting in a detected signal which comprises a desired signal originating from the targets and a background signal. It moreover comprises a bleaching device for bleaching of at least part of the sources generating the background signal and a processor configured to trigger the bleaching device to start bleaching, and to trigger the light source for exciting the remaining luminescent targets which are not bleached, and to trigger the detector for detecting the luminescence signal of the remaining luminescent targets, so as to generate a measurement signal representative for the quantification of the luminescent targets.
    Type: Application
    Filed: June 30, 2016
    Publication date: June 21, 2018
    Applicant: IMEC VZW
    Inventors: Peter Peumans, Liesbet Lagae, Willem Van Roy, Tim Stakenborg, Pol Van Dorpe
  • Publication number: 20180169653
    Abstract: A micro analysis chip comprises an inlet and a fluid flow path communicating thereto. The fluid flow path comprises a first flow path, a second flow path, and a third flow path arranged continuously along a longitudinal direction of the fluid flow path. An antibody is bound on at least one peripheral surface selected from the group consisting of peripheral surfaces of the second and third flow paths. A cross-sectional area of the third flow path is constant or increased monotonically along a direction X from the second flow path toward the third flow path. A cross-sectional area of the second flow path is increased monotonically along the direction X from the one end to the other end of the second flow path. A cross-sectional area of the first flow path is larger than a cross-sectional area at the one end of the second flow path.
    Type: Application
    Filed: February 20, 2018
    Publication date: June 21, 2018
    Inventors: Shuji SATO, Yasuaki OKUMURA, Yukari NISHIYAMA, Tatsurou KAWAMURA, Ben JONES, Liesbet LAGAE, Tim STAKENBORG
  • Publication number: 20180172587
    Abstract: A sensor device for quantifying luminescent targets. The device comprises a light source for exciting the targets, thus generating luminescence signals, and a detector for detecting these signals of the targets in a cell, resulting in a detected signal comprising a desired signal and a background signal. The detector has a spatial cell resolution and/or a time resolution that is so high that only a limited number of targets will be present in the cell when measuring at low concentration and/or that only a limited number of targets add to the cell in between two measurements. A change in the number of targets in the cell can be observed in the detected signal. The device comprises a processor configured to distinguish the desired and the background signal, and to combine the detected signals of the different cells and/or moments in time, to quantify the targets.
    Type: Application
    Filed: June 22, 2016
    Publication date: June 21, 2018
    Applicant: IMEC VZW
    Inventors: Peter Peumans, Liesbet Lagae, Willem Van Roy, Tim Stakenborg, Pol Van Dorpe
  • Patent number: 9921163
    Abstract: A method (200) for determining a concentration of an analyte in a fluid or fluid sample, comprises: providing (201) a SERS substrate comprising receptor molecules (107) capable of binding competitor molecules (106); contacting (202) the SERS substrate (102) with a fluid (sample) comprising analyte (108) and such competitor molecules (106); radiating (203) the SERS substrate (102) with a light source while measuring a SERS signal; and determining (205) a concentration of the analyte (108) based on the measured signal level. A corresponding device and system are also provided.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: March 20, 2018
    Assignees: IMEC vzw, Panasonic Corporation
    Inventors: Hilde Jans, Masahiko Shioi, Karolien Jans, Liesbet Lagae
  • Patent number: 9862601
    Abstract: A system (100) is described for characterizing and/or manipulating molecules. The system may especially be suitable for biological molecules, although the invention is not limited thereto. The system (100) comprises a substrate (110) comprising a nanostructure (120) being suitable for translocation of molecules through the nanostructure (120). It furthermore comprises a means (210) for translocating molecules through the nanostructure (120) and a plasmonic force field generating means (130) adapted for influencing the translocation speed of the particle by applying a plasmonic force field at the nanostructure (120). A corresponding method also is described.
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: January 9, 2018
    Assignees: IMEC, Katholieke Universiteit Leuven, KU LEUVEN R&D
    Inventors: Chang Chen, Pol Van Dorpe, Kai Cheng, Tim Stakenborg, Liesbet Lagae
  • Patent number: 9833781
    Abstract: An example micro-fluidic device includes a micro-fluidic channel having an inner surface and a plurality of pillars positioned along the inner surface. The device further includes a plurality of power supplies connected to the pillars. Another example micro-fluidic device includes a micro-fluidic channel having an inner surface and a plurality of pillars positioned along the inner surface. The device further includes a power supply. The pillars are grouped into at least two groups of pillars, each group of pillars including at least two pillars, and all pillars of at least one group of pillars are connected to the power supply. In another example, a sensing system for detecting bioparticles includes a micro-fluidic device, wherein a surface of each pillar comprises functionalized plasmonic nanoparticles or functionalized SERS nanoparticles, a radiation source for radiating the micro-fluidic device, and a detector for detecting SERS signals or surface plasmon resonance.
    Type: Grant
    Filed: May 17, 2014
    Date of Patent: December 5, 2017
    Assignee: IMEC
    Inventors: Chengjun Huang, Chengxun Liu, Liesbet Lagae, Paolo Fiorini, Benjamin Jones
  • Publication number: 20170341078
    Abstract: The present disclosure relates to microbubble generator devices for deflecting objects in a liquid, systems for sorting objects that utilize such devices, and methods for fabricating such devices. At least one embodiment relates to a micro-fluidic device for deflecting objects in a liquid. The device includes a substrate for providing an object-containing liquid thereon. The device also includes a microbubble generator that includes at least one microbubble generating element. The microbubble generator is located on a surface of the substrate and in direct contact with the object-containing liquid when the object-containing liquid is provided on the substrate. The at least one microbubble generating element is configured to deflect a single object in the object-containing liquid through generation of a plurality of microbubbles.
    Type: Application
    Filed: November 19, 2015
    Publication date: November 30, 2017
    Applicant: IMEC VZW
    Inventors: Chengxun Liu, Peter Peumans, Liesbet Lagae, Bivragh Majeed
  • Publication number: 20170326552
    Abstract: The present disclosure relates to a fluid analyzing device that includes a sensing device for analyzing a fluid sample. The sensing device includes a microchip configured for sensing the fluid sample, and a closed micro-fluidic component for propagating the fluid sample to the microchip. The fluid sample can be provided to the micro-fluidic component via an inlet of the fluid analyzing device. And a vacuum compartment, which is air-tight connected to the sensing device, can create in the micro-fluidic component a suction force suitable for propagating the fluid sample through the micro-fluidic component.
    Type: Application
    Filed: November 24, 2015
    Publication date: November 16, 2017
    Applicant: IMEC VZW
    Inventors: Peter Peumans, Liesbet Lagae, Paolo Fiorini
  • Publication number: 20170326546
    Abstract: The present disclosure relates to devices and methods for analyzing a fluid sample. An example device comprises a fluidic substrate comprising a micro-fluidic component embedded therein, for propagating a fluid sample; a needle or inlet for providing the fluid sample which is fluidically connected to the micro-fluidic component; a lid attached to the fluidic substrate thereby at least partly covering the fluidic substrate and at least partly closing the micro-fluidic component; wherein the fluidic substrate is a glass fluidic substrate and wherein the lid is a microchip. The present disclosure also relates to a method for fabricating a fluid analysis device. The method comprises providing a fluidic substrate; providing a lid; attaching the lid to the fluidic substrate to close the fluidic substrate at least partly.
    Type: Application
    Filed: November 26, 2015
    Publication date: November 16, 2017
    Applicant: IMEC VZW
    Inventors: Peter Peumans, Liesbet Lagae, Paolo Fiorini
  • Publication number: 20170326551
    Abstract: The present disclosure relates to a fluid analysis device which comprises a sensing device for analyzing a fluid sample, the sensing device comprising a micro-fluidic component for propagating the fluid sample and a microchip configured for sensing the fluid sample in the micro-fluidic component; a sealed fluid compartment containing a further fluid, the compartment being fluid-tight connected to the sensing device and adapted for providing the further fluid to the micro-fluidic component when the sealed fluid compartment is opened; and an inlet for providing the fluid sample to the micro-fluidic component. Further, the present disclosure relates to a method for sensing a fluid sample using the fluid analysis device.
    Type: Application
    Filed: November 24, 2015
    Publication date: November 16, 2017
    Applicant: IMEC VZW
    Inventors: Peter Peumans, Liesbet Lagae, Paolo Fiorini
  • Patent number: 9734577
    Abstract: A device and method for sorting objects immersed in a flowing medium are disclosed. An example device comprises a holographic imaging unit comprising one or more holographic imaging elements, a fluid handling unit comprising one or more microfluidic channels configured to conduct flowing medium along a corresponding holographic imaging element and at least one microfluidic switch arranged downstream of an imaging region in the microfluidic channel configured to direct objects in the flowing medium into a one of a plurality of outlets. The example device also comprises a processor configured to determine real-time characterizations of holographic diffraction images obtained for the moving objects. The processing unit is further configured to control the at least one microfluidic switch in response to the real-time characterizations.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: August 15, 2017
    Assignees: IMEC, Katholieke Universiteit Leuven, KU Leuven R&D
    Inventors: Liesbet Lagae, Peter Peumans, Kris Verstreken, Dries Vercruysse, Chengxun Liu
  • Patent number: 9683253
    Abstract: The present invention provides a method to analyze or identify a cell. The method comprises: providing a cell, stimulating the cell with a stimulant thereby modifying a cell membrane impedance of the cell, monitoring the cell membrane impedance of the cell and identifying the cell based on the monitored cell membrane impedance. A corresponding device is also provided.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: June 20, 2017
    Assignee: IMEC
    Inventors: Chengxun Liu, Willem Van Roy, Liesbet Lagae, Chengjun Huang
  • Patent number: 9678014
    Abstract: In a first aspect, a micro-fluidic device is presented, comprising: a micro-fluidic channel having an inner surface; a sensing region inside the micro-fluidic channel configured for adsorbing at least one analyte, the sensing region comprising a plurality of pillars positioned along the length of the inner surface of the micro-fluidic channel wherein the plurality of pillars are configured for creating an electromagnetic field localization thereby making the sensing region suitable for sensing plasmonic or surface enhanced Raman signals when irradiated; characterized in that: the plurality of pillars are further configured for creating a capillary action in the micro-fluidic channel when a fluid sample is present in the micro-fluidic channel.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: June 13, 2017
    Assignee: IMEC VZW
    Inventors: Chengjun Huang, Liesbet Lagae
  • Patent number: 9617149
    Abstract: The present disclosure relates to a device for analyzing a fluid sample. In one aspect, the device includes a fluidic substrate that comprises a micro-fluidic component embedded in the fluidic substrate configured to propagate a fluid sample via capillary force through the device and a means for providing a fluid sample connected to the micro-fluidic component. The device also includes a lid attached to the fluidic substrate at least partly covering the fluidic substrate and at least partly closing the micro-fluidic component. The fluidic substrate may be a silicon fluidic substrate and the lid may be a CMOS chip. In another aspect, embodiments of the present disclosure relate to a method for fabricating such a device, and the method may include providing a fluidic substrate, providing a lid, and attaching, through a CMOS compatible bonding process, the fluidic substrate to the lid to close the fluidic substrate at least partly.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: April 11, 2017
    Assignee: IMEC VZW
    Inventors: Liesbet Lagae, Peter Peumans
  • Publication number: 20170082544
    Abstract: The present disclosure relates to semiconductor devices for detecting fluorescent particles. At least one embodiment relates to an integrated semiconductor device for detecting fluorescent tags. The device includes a first layer, a second layer, a third layer, a fourth layer, and a fifth layer. The first layer includes a detector element. The second layer includes a rejection filter. The third layer is fabricated from dielectric material. The fourth layer is an optical waveguide configured and positioned such that a top surface of the fourth layer is illuminated with an evanescent tail of excitation light guided by the optical waveguide when the fluorescent tags are present. The fifth layer includes a microfluidic channel. The optical waveguide is configured and positioned such that the microfluidic channel is illuminated with the evanescent tail. The detector element is positioned such that light from activated fluorescent tags can be received.
    Type: Application
    Filed: May 22, 2015
    Publication date: March 23, 2017
    Applicant: IMEC VZW
    Inventors: Pol Van Dorpe, Liesbet Lagae, Peter Peumans, Andim Stassen, Philippe Helin, Bert Du Bois, Simone Severi
  • Patent number: 9597692
    Abstract: A method and device for the sorting and focusing of suspended particles is disclosed. The device has a micro-fluidic channel, at least one inlet and a number of outlets for providing, sorting and receiving particles. A patterned array of grooves is present inside the micro-fluidic channel. The inlets and outlets are connected to the micro-fluidic channel. The particles are sorted by the array of grooves. The method consists of providing particles in a flow-focused manner to one end of the micro-fluidic channel using at least one inlet. The particles are sorted by the array of grooves present in the micro-fluidic channel. Particles are collected by a number of outlets which are connected to the other end of the micro-fluidic channel.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: March 21, 2017
    Assignees: IMEC, Johns Hopkins University
    Inventors: Jorge A. Bernate, Chengxun Liu, Liesbet Lagae, German Drazer
  • Publication number: 20170061619
    Abstract: A device and method for sorting objects immersed in a flowing medium are disclosed. An example device comprises a holographic imaging unit comprising one or more holographic imaging elements, a fluid handling unit comprising one or more microfluidic channels configured to conduct flowing medium along a corresponding holographic imaging element and at least one microfluidic switch arranged downstream of an imaging region in the microfluidic channel configured to direct objects in the flowing medium into a one of a plurality of outlets. The example device also comprises a processor configured to determine real-time characterizations of holographic diffraction images obtained for the moving objects. The processing unit is further configured to control the at least one microfluidic switch in response to the real-time characterizations.
    Type: Application
    Filed: November 15, 2016
    Publication date: March 2, 2017
    Applicants: IMEC, Katholieke Universiteit Leuven, KU LEUVEN R&D
    Inventors: Liesbet Lagae, Peter Peumans, Kris Verstreken, Dries Vercruysse, Chengxun Liu
  • Publication number: 20160370279
    Abstract: A microfluidic magnetic selector comprises a microfluidic channel comprising at least one bifurcation, forming a selection portion of the selector and splitting the microfluidic channel into a main channel and at least one selection channel; at least one magnetic flux concentrator for concentrating a magnetic flux at the level of the bifurcation, and means for generating a magnetic field within the magnetic flux concentrator, and a controller for controlling magnetic pulses through the magnetic flux concentrator.
    Type: Application
    Filed: June 10, 2016
    Publication date: December 22, 2016
    Inventors: Richard Min, Liesbet Lagae, Chengxun Liu, Chengjun Huang
  • Patent number: 9495742
    Abstract: A device and method for sorting objects immersed in a flowing medium are described. An example device comprises a holographic imaging unit comprising a plurality of holographic imaging elements, a fluid handling unit comprising a plurality of microfluidic channels for conducting flowing medium along a corresponding holographic imaging element and a microfluidic switch arranged downstream of an imaging region in the microfluidic channel for directing each object in the flowing medium into a one of a plurality of outlets. The example device also comprises a processing unit configured to determine real-time characterizations of holographic diffraction images obtained for each of the moving objects, with each real-time characterization accounting for at least one predetermined object-type signature. The processing unit is further adapted for controlling the microfluidic switches in response to the real-time characterizations.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: November 15, 2016
    Assignees: IMEC, Katholieke Universiteit Leuven, KU LEUVEN R&D
    Inventors: Liesbet Lagae, Peter Peumans, Kris Verstreken, Dries Vercruysse, Chengxun Liu