Patents by Inventor Liesbet Lagae

Liesbet Lagae has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8164755
    Abstract: In one aspect of the invention, a method or apparatus is described for determining concentration(s) of one or more analytes in a sample using plasmonic excitations. In another aspect, a method relates to designing systems for such concentration determination, wherein metallic nanostructures are used in combination with local electrical detection of such plasmon resonances via a semiconducting photodetector. In certain aspects, the method exploits the coupling of said metallic nanostructure(s) to a semiconducting photodetector, said detector being placed in the “metallic structure's” near field. Surface plasmon excitation can be transduced efficiently into an electrical signal through absorption of light that is evanescently coupled or scattered in a semiconductor volume. This local detection technique allows the construction of sensitive nanoscale bioprobes and arrays thereof.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: April 24, 2012
    Assignees: IMEC, Katholieke Universiteit Leuven, K.U. Leuven R&D
    Inventors: Iwijn De Vlaminck, Pol Van Dorpe, Liesbet Lagae
  • Publication number: 20120064567
    Abstract: An active sieve device for the isolation and characterization of bio-analytes is provided, comprising a substrate for supporting the bio-analytes. The substrate comprises a plurality of interconnections and a plurality of regions, each region comprising a hole and at least one electrode embedded in or located on the substrate and electrically associated with the hole. Each region further comprises at least one transistor integrated in the substrate and operably connected to the at least one electrode and to at least one of the plurality of interconnections.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 15, 2012
    Applicant: IMEC
    Inventors: Tim Stakenborg, Chengxun Liu, Liesbet Lagae, Ronald Kox
  • Publication number: 20120057163
    Abstract: A method for forming a nanostructure penetrating a layer and the device made thereof is disclosed. In one aspect, the device has a substrate, a layer present thereon, and a nanostructure penetrating the layer. The nanostructure defines a nanoscale passageway through which a molecule to be analyzed can pass through. The nanostructure has, in cross-sectional view, a substantially triangular shape. This shape is particularly achieved by growth of an epitaxial layer having crystal facets defining tilted sidewalls of the nanostructure. It is highly suitably for use for optical characterization of molecular structure, particularly with surface plasmon enhanced transmission spectroscopy.
    Type: Application
    Filed: June 9, 2011
    Publication date: March 8, 2012
    Applicants: Katholieke Universiteit Leuven, IMEC
    Inventors: Kai Cheng, Pol Van Dorpe, Liesbet Lagae, Gustaaf Borghs, Chang Chen
  • Publication number: 20120052258
    Abstract: A method according to embodiments of the present invention comprises providing a magnetic stack comprising a magnetic layer sub-stack comprising magnetic layers and a bottom conductive electrode and a top conductive electrode electrically connecting the magnetic layer sub-stack at opposite sides thereof; providing a sacrificial pillar on top of the magnetic stack, the sacrificial pillar having an undercut with respect to an overlying second sacrificial material and a sloped foot with increasing cross-sectional dimension towards the magnetic stack, using the sacrificial pillar for patterning the magnetic stack, depositing an insulating layer around the sacrificial pillar, selectively removing the sacrificial pillar, thus creating a contact hole towards the patterned magnetic stack, and filling the contact hole with electrically conductive material.
    Type: Application
    Filed: May 18, 2010
    Publication date: March 1, 2012
    Applicant: IMEC
    Inventors: Maria Op De Beeck, Liesbet Lagae
  • Publication number: 20120002207
    Abstract: In one aspect of the invention, a method or apparatus is described for determining concentration(s) of one or more analytes in a sample using plasmonic excitations. In another aspect, a method relates to designing systems for such concentration determination, wherein metallic nanostructures are used in combination with local electrical detection of such plasmon resonances via a semiconducting photodetector. In certain aspects, the method exploits the coupling of said metallic nanostructure(s) to a semiconducting photodetector, said detector being placed in the “metallic structure's” near field. Surface plasmon excitation can be transduced efficiently into an electrical signal through absorption of light that is evanescently coupled or scattered in a semiconductor volume. This local detection technique allows the construction of sensitive nanoscale bioprobes and arrays thereof.
    Type: Application
    Filed: September 14, 2011
    Publication date: January 5, 2012
    Applicants: Katholieke Universiteit Leuven, K.U. Leuven R&D, IMEC
    Inventors: Iwijn De Vlaminck, Pol Van Dorpe, Liesbet Lagae
  • Publication number: 20110312056
    Abstract: The present invention relates to a population of monodisperse magnetic nanoparticles with a diameter between 1 and 100 nm which are coated with a layer with hydrophilic end groups. Herein the layer with hydrophilic end groups comprises an inner layer of monosaturated and/or monounsaturated fatty acids bound to said nanoparticles and bound to said fatty acids, an outer layer of a phospholipid conjugated to a monomethoxy polyethyleneglycol (PEG) comprising a hydrophilic end group, or comprises a covalently bound hydrophilic layer bound to said nanoparticles.
    Type: Application
    Filed: May 19, 2011
    Publication date: December 22, 2011
    Applicants: KATHOLIEKE UNIVERSITEIT LEUVEN, K.U. LEUVEN R&D, IMEC
    Inventors: Deepak Balaji Thimiri Govinda Raj, Liesbet Lagae, Wim Annaert, Gustaaf Borghs
  • Publication number: 20110249259
    Abstract: Methods and apparatus in the field of single molecule sensing are described, e.g. for molecular analysis of analytes such as molecular analytes, e.g. nucleic acids, proteins, polypeptides, peptides, lipids and polysaccharides. Molecular spectroscopy on a molecule translocating through a solid-state nanopore is described. Optical spectroscopic signals are enhanced by plasmonic field-confinement and antenna effects and probed in transmission by plasmon-enabled transmission of light through an optical channel that overlaps with the physical channel.
    Type: Application
    Filed: December 9, 2009
    Publication date: October 13, 2011
    Applicants: KATHOLIEKE UNIVERSITEIT LEUVEN, K.U. LEUVEN R&D, IMEC
    Inventors: Pol Van Dorpe, Iwijn De Vlaminck, Liesbet Lagae, Gustaaf Borghs
  • Patent number: 8027040
    Abstract: In one aspect of the invention, a method or apparatus is described for determining concentration(s) of one or more analytes in a sample using plasmonic excitations. In another aspect, a method relates to designing systems for such concentration determination, wherein metallic nanostructures are used in combination with local electrical detection of such plasmon resonances via a semiconducting photodetector. In certain aspects, the method exploits the coupling of said metallic nanostructure(s) to a semiconducting photodetector, said detector being placed in the “metallic structure's” near field. Surface plasmon excitation can be transduced efficiently into an electrical signal through absorption of light that is evanescently coupled or scattered in a semiconductor volume. This local detection technique allows the construction of sensitive nanoscale bioprobes and arrays thereof.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: September 27, 2011
    Assignees: IMEC, Katholieke Universiteit Leuven, K.U. Leuven R&D
    Inventors: Iwijn De Vlaminck, Pol Van Dorpe, Liesbet Lagae
  • Patent number: 7859349
    Abstract: The present invention is related to a device and corresponding methods for generating an oscillating signal. The device comprises a means for providing a current of spin polarised charge carriers, a magnetic, e.g. ferromagnetic, excitable layer adapted for receiving the generated current of spin polarised charge carriers thus generating an oscillating signal with a frequency Vosc and an integrated means for interacting with said magnetic, e.g. ferromagnetic, excitable layer such that a selection of said oscillation frequency is achieved. No external field needs to be applied to select or tune the frequency. Different types of integrated means can be used, such as e.g. means inducing mechanical stress in the magnetic, e.g. ferromagnetic, excitable layer, means inducing exchange bias interactions and means inducing magnetostatic interactions.
    Type: Grant
    Filed: December 24, 2004
    Date of Patent: December 28, 2010
    Assignee: IMEC
    Inventors: Wouter Eyckmans, Liesbet Lagae
  • Patent number: 7791250
    Abstract: The present invention relates to a device and corresponding method for ultrafast controlling of the magnetization of a magnetic element. A device (100) includes a surface acoustic wave generating means (102), a transport layer (104), which is typically functionally and partially structurally comprised in said SAW generating means (102), and at least one ferromagnetic element (106). A surface acoustic wave is generated and propagates in a transport layer (104) which typically consists of a piezo-electric material. Thus, strain is induced in the transport layer (104) and in the ferromagnetic element (106) in contact with this transport layer (104). Due to magneto elastic coupling this generates an effective magnetic field in the ferromagnetic element (106). If the surface acoustic wave has a frequency substantially close to the ferromagnetic resonance (FMR) frequency ?FMR the ferromagnetic element (106) is absorbed well and the magnetization state of the element can be controlled with this FMR frequency.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: September 7, 2010
    Assignee: IMEC
    Inventors: Wouter Eyckmans, Liesbet Lagae
  • Publication number: 20100164487
    Abstract: The present invention relates to a device and corresponding method for ultrafast controlling of the magnetization of a magnetic element. A device (100) includes a surface acoustic wave generating means (102), a transport layer (104), which is typically functionally and partially structurally comprised in said SAW generating means (102), and at least one ferromagnetic element (106). A surface acoustic wave is generated and propagates in a transport layer (104) which typically consists of a piezo-electric material. Thus, strain is induced in the transport layer (104) and in the ferromagnetic element (106) in contact with this transport layer (104). Due to magneto elastic coupling this generates an effective magnetic field in the ferromagnetic element (106). If the surface acoustic wave has a frequency substantially close to the ferromagnetic resonance (FMR) frequency ?FMR the ferromagnetic element (106) is absorbed well and the magnetization state of the element can be controlled with this FMR frequency.
    Type: Application
    Filed: December 29, 2009
    Publication date: July 1, 2010
    Applicant: INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM (IMEC)
    Inventors: Wouter Eyckmans, Liesbet Lagae
  • Patent number: 7719280
    Abstract: A detection system having a receiver for detecting a material having a magnetic resonance response to illumination by pulses of ultra-wideband (UWB) electromagnetic radiation is disclosed. The receiver comprises a detector for detecting the pulses after they have interacted with the material, and a discriminator arranged to identify in the detected pulses the magnetic resonance response of the material. By scanning an item tagged with a tag having a material having a magnetic resonant response, by illuminating the item with UWB pulses and identifying in detected pulses the magnetic resonance response of the material, items can be located, imaged, or activated. The magnetic resonance response of the tag can cause activation of the tag. The tag can have a magnetic resonance response arranged to provide an identifiable magnetic resonance signature such that different tags can be identified and distinguished by their signatures.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: May 18, 2010
    Assignee: IMEC
    Inventors: Liesbet Lagae, Gustaaf Borghs
  • Patent number: 7682840
    Abstract: A method and magnetic device for improving the desirable properties of a magnetic device, e.g., magnetization uniformity and reproducibility. Moreover the invention provides magnetic cells that are more magnetically homogeneous, with smaller amount of end domain magnetization canting from the average cell magnetization direction. The invention may provide a magnetic memory cell with less variation in switching fields, more spatially coherent dynamical magnetic properties for high speed and processional or coherent magnetic switching, and higher signal due to the increased uniformity. It may provide a magnetic sensor with more spatially coherent magnetic properties for high speed and processional or coherent magnetic switching, and increased signal. It may provide a read head element with more spatially coherent magnetic properties for high speed and processional or coherent magnetic sensing, and increased signal.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: March 23, 2010
    Assignee: IMEC
    Inventors: Wayne Hiebert, Jo De Boeck, Liesbet Lagae, Roel Wirix-Speetjens
  • Patent number: 7638922
    Abstract: The present invention relates to a device and corresponding method for ultrafast controlling of the magnetization of a magnetic element. A device (100) includes a surface acoustic wave generating means (102), a transport layer (104), which is typically functionally and partially structurally comprised in said SAW generating means (102), and at least one ferromagnetic element (106). A surface acoustic wave is generated and propagates in a transport layer (104) which typically consists of a piezo-electric material. Thus, strain is induced in the transport layer (104) and in the ferromagnetic element (106) in contact with this transport layer (104). Due to magneto elastic coupling this generates an effective magnetic field in the ferromagnetic element (106). If the surface acoustic wave has a frequency substantially close to the ferromagnetic resonance (FMR) frequency ?FMR the ferromagnetic element (106) is absorbed well and the magnetization state of the element can be controlled with this FMR frequency.
    Type: Grant
    Filed: December 24, 2004
    Date of Patent: December 29, 2009
    Assignee: Interuniversitair Microelektronica Centrum (IM
    Inventors: Wouter Eyckmans, Liesbet Lagae
  • Publication number: 20090027681
    Abstract: In one aspect of the invention, a method or apparatus is described for determining concentration(s) of one or more analytes in a sample using plasmonic excitations. In another aspect, a method relates to designing systems for such concentration determination, wherein metallic nanostructures are used in combination with local electrical detection of such plasmon resonances via a semiconducting photodetector. In certain aspects, the method exploits the coupling of said metallic nanostructure(s) to a semiconducting photodetector, said detector being placed in the “metallic structure's” near field. Surface plasmon excitation can be transduced efficiently into an electrical signal through absorption of light that is evanescently coupled or scattered in a semiconductor volume. This local detection technique allows the construction of sensitive nanoscale bioprobes and arrays thereof.
    Type: Application
    Filed: July 24, 2008
    Publication date: January 29, 2009
    Applicants: Interuniversitair Microelektronica Centrum (IMEC), Katholieke Universiteit Leuven, K.U. Leuven R&D
    Inventors: Iwijn De Vlaminck, Pol Van Dorpe, Liesbet Lagae
  • Publication number: 20080252293
    Abstract: A detection system having a receiver for detecting a material having a magnetic resonance response to illumination by pulses of ultra-wideband (UWB) electromagnetic radiation is disclosed. The receiver comprises a detector for detecting the pulses after they have interacted with the material, and a discriminator arranged to identify in the detected pulses the magnetic resonance response of the material. By scanning an item tagged with a tag having a material having a magnetic resonant response, by illuminating the item with UWB pulses and identifying in detected pulses the magnetic resonance response of the material, items can be located, imaged, or activated. The magnetic resonance response of the tag can cause activation of the tag. The tag can have a magnetic resonance response arranged to provide an identifiable magnetic resonance signature such that different tags can be identified and distinguished by their signatures.
    Type: Application
    Filed: May 17, 2007
    Publication date: October 16, 2008
    Applicant: Interuniversitair Microelektronica Centrum vzw (IMEC)
    Inventors: Liesbet Lagae, Gustaaf Borghs
  • Publication number: 20070285184
    Abstract: The present invention is related to a a device and corresponding methods for generating an oscillating signal. The device comprises a means for providing a current of spin polarised charge carriers, a magnetic, e.g. ferromagnetic, excitable layer adapted for receiving the generated current of spin polarised charge carriers thus generating an oscillating signal with a frequency and an integrated means for interacting with said magnetic, e.g. ferromagnetic, excitable layer such that a selection of said oscillation frequency is achieved. No external field needs to be applied to select or tune the frequency. Different types of integrated means can be used, such as e.g. means inducing mechanical stress in the magnetic, e.g. ferromagnetic, excitable layer, means inducing exchange bias interactions and means inducing magnetostatic interactions.
    Type: Application
    Filed: December 24, 2004
    Publication date: December 13, 2007
    Applicant: Interuniversitair Microelektronica Centrum (IMEC)
    Inventors: Wouter Eyckmans, Liesbet Lagae
  • Publication number: 20070183190
    Abstract: The present invention relates to a device and corresponding method for ultrafast controlling of the magnetization of a magnetic element. A device (100) includes a surface acoustic wave generating means (102), a transport layer (104), which is typically functionally and partially structurally comprised in said SAW generating means (102), and at least one ferromagnetic element (106). A surface acoustic wave is generated and propagates in a transport layer (104) which typically consists of a piezo-electric material. Thus, strain is induced in the transport layer (104) and in the ferromagnetic element (106) in contact with this transport layer (104). Due to magneto elastic coupling this generates an effective magnetic field in the ferromagnetic element (106). If the surface acoustic wave has a frequency substantially close to the ferromagnetic resonance (FMR) frequency ?FMR the ferromagnetic element (106) is absorbed well and the magnetisation state of the element can be controlled with this FMR frequency.
    Type: Application
    Filed: December 24, 2004
    Publication date: August 9, 2007
    Inventors: Wouter Eyckmans, Liesbet Lagae
  • Publication number: 20060198185
    Abstract: A method and magnetic device for improving the desirable properties of a magnetic device, e.g., magnetization uniformity and reproducibility. Moreover the invention provides magnetic cells that are more magnetically homogeneous, with smaller amount of end domain magnetization canting from the average cell magnetization direction. The invention may provide a magnetic memory cell with less variation in switching fields, more spatially coherent dynamical magnetic properties for high speed and processional or coherent magnetic switching, and higher signal due to the increased uniformity. It may provide a magnetic sensor with more spatially coherent magnetic properties for high speed and processional or coherent magnetic switching, and increased signal. It may provide a read head element with more spatially coherent magnetic properties for high speed and processional or coherent magnetic sensing, and increased signal.
    Type: Application
    Filed: April 4, 2006
    Publication date: September 7, 2006
    Inventors: Wayne Hiebert, Jo Boeck, Liesbet Lagae, Roel Wirix-Speetjens
  • Patent number: 7068537
    Abstract: A method and magnetic device for improving the desirable properties of a magnetic device, e.g., magnetization uniformity and reproducibility. Moreover the invention provides magnetic cells that are more magnetically homogeneous, with smaller amount of end domain magnetization canting from the average cell magnetization direction. The invention may provide a magnetic memory cell with less variation in switching fields, more spatially coherent dynamical magnetic properties for high speed and processional or coherent magnetic switching, and higher signal due to the increased uniformity. It may provide a magnetic sensor with more spatially coherent magnetic properties for high speed and processional or coherent magnetic switching, and increased signal. It may provide a read head element with more spatially coherent magnetic properties for high speed and processional or coherent magnetic sensing, and increased signal.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: June 27, 2006
    Assignee: Interuniversitair Microelektronica Centrum (IMEC)
    Inventors: Wayne Hiebert, Jo De Boeck, Liesbet Lagae, Roel Wirix-Speetjens