Patents by Inventor Lior Huli

Lior Huli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10403501
    Abstract: Techniques herein include a bladder-based dispense system using an elongate bladder configured to selectively expand and contract to assist with dispense actions. This dispense system compensates for filter-lag, which often accompanies fluid filtering for microfabrication. This dispense system also provides a high-purity and high precision dispense unit. A process fluid filter is located downstream from a process fluid source as well as a system valve. Downstream from the process fluid filter there are no valves. Dispense actions can be initiated and stop while the system valve is open by using the elongate bladder. The elongate bladder can be expanded to stop or pause a dispense action, and then be contracted to assist with a dispense action.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: September 3, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Anton J. deVilliers, Rodney L. Robison, Ronald Nasman, David Travis, James Grootegoed, Norman A. Jacobson, Jr., Lior Huli, Joshua S. Hooge
  • Patent number: 10354872
    Abstract: Techniques herein include a bladder-based dispense system using an elongate bladder configured to selectively expand and contract to assist with dispense actions. This dispense system compensates for filter-lag, which often accompanies fluid filtering for microfabrication. This dispense system also provides a high-purity and high precision dispense unit. A meniscus sensor monitors a position of a meniscus of process fluid at a nozzle. The elongate bladder unit is used to maintain a position of the meniscus at a particular location by selectively expanding or contracting the bladder, thereby moving or holding a meniscus position. Expansion of the elongate bladder is also used for a suck-back action after completing a dispense action.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: July 16, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Anton J. deVilliers, Rodney L. Robison, Ronald Nasman, David Travis, James Grootegoed, Norman A. Jacobson, Jr., David Hetzer, Lior Huli, Joshua S. Hooge
  • Publication number: 20190187556
    Abstract: Embodiments of methods for patterning using enhancement of surface adhesion are presented. In an embodiment, a method for patterning using enhancement of surface adhesion may include providing an input substrate with an anti-reflective coating layer and an underlying layer. Such a method may also include performing a surface adhesion modification process on the substrate, the surface adhesion modification process utilizing a plasma treatment configured to increase an adhesion property of an anti-reflective coating layer without affecting downstream processes. In an embodiment, the method may also include performing a photoresist coating process, a mask exposure process, and a developing process to generate a target patterned structure in a photoresist layer on the substrate. In such embodiments, the method may include controlling operating parameters of the surface adhesion modification process to achieve target profiles of the patterned structure and substrate throughput objectives.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 20, 2019
    Inventors: Wanjae Park, Lior Huli, Soo Doo Chae
  • Patent number: 10141183
    Abstract: Techniques herein provide methods for depositing spin-on metal materials for creating metal hard mask (MHM) structures without voids in the deposition. This includes effective spin-on deposition of TiOx, ZrOx, SnOx, HFOx, TaOx, et cetera. Such materials can help to provide differentiation of material etch resistivity for differentiation. By enabling spin-on metal hard mask (MHM) for use with a multi-line layer, a slit-based or self-aligned blocking strategy can be effectively used. Techniques herein include identifying a fill material to fill particular openings in a given relief pattern, modifying a surface energy value of surfaces within the opening such that a contact angle value of an interface between the fill material in liquid form and the sidewall or floor surfaces enables gap-free or void-free filling.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: November 27, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Nihar Mohanty, Lior Huli, Jeffrey Smith, Richard Farrell
  • Publication number: 20180254202
    Abstract: Provided is a nozzle system for dispensing a dispense chemical onto a substrate, the system comprising: a nozzle comprising a nozzle body and a nozzle tip; a shielding device coupled to the nozzle tip, the shielding device configured to create a mini-environment for a dispense chemical such that a partial pressure of the dispense chemical is maintained in the shielding device; wherein the nozzle system is configured to meet selected dispense objectives.
    Type: Application
    Filed: May 7, 2018
    Publication date: September 6, 2018
    Inventors: Ronald Nasman, Lior Huli
  • Patent number: 9991133
    Abstract: Techniques herein provide an etch-based planarization technique. An initial film is deposited on a substrate. Deposition of this initial film results in a non-planar film because of differences in area density of underlying structures (for example, open areas compared to closely spaced trenches). Etch processes are executed that use a reverse lag RIE process to planarize the initial film, and then another coat of the film material can be deposited, resulting in a planar surface. Such techniques can planarized substrates without using chemical mechanical polishing (CMP).
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: June 5, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Cheryl Pereira, Nihar Mohanty, Lior Huli
  • Publication number: 20180047562
    Abstract: Techniques herein include a bladder-based dispense system using an elongate bladder configured to selectively expand and contract to assist with dispense actions. This dispense system compensates for filter-lag, which often accompanies fluid filtering for microfabrication. This dispense system also provides a high-purity and high precision dispense unit. A process fluid filter is located downstream from a process fluid source as well as a system valve. Downstream from the process fluid filter there are no valves. Dispense actions can be initiated and stop while the system valve is open by using the elongate bladder. The elongate bladder can be expanded to stop or pause a dispense action, and then be contracted to assist with a dispense action.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 15, 2018
    Inventors: Anton J. deVilliers, Rodney L. Robison, Ronald Nasman, David Travis, James Grootegoed, Norman A. Jacobson, JR., Lior Huli, Joshua S. Hooge
  • Publication number: 20180047584
    Abstract: Techniques herein provide an etch-based planarization technique. An initial film is deposited on a substrate. Deposition of this initial film results in a non-planar film because of differences in area density of underlying structures (for example, open areas compared to closely spaced trenches). Etch processes are executed that use a reverse lag RIE process to planarize the initial film, and then another coat of the film material can be deposited, resulting in a planar surface. Such techniques can planarized substrates without using chemical mechanical polishing (CMP).
    Type: Application
    Filed: August 11, 2017
    Publication date: February 15, 2018
    Inventors: Cheryl Pereira, Nihar Mohanty, Lior Huli
  • Publication number: 20180047563
    Abstract: Techniques herein include a bladder-based dispense system using an elongate bladder configured to selectively expand and contract to assist with dispense actions. This dispense system compensates for filter-lag, which often accompanies fluid filtering for microfabrication. This dispense system also provides a high-purity and high precision dispense unit. A meniscus sensor monitors a position of a meniscus of process fluid at a nozzle. The elongate bladder unit is used to maintain a position of the meniscus at a particular location by selectively expanding or contracting the bladder, thereby moving or holding a meniscus position. Expansion of the elongate bladder is also used for a suck-back action after completing a dispense action.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 15, 2018
    Inventors: Anton J. deVilliers, Rodney L. Robison, Ronald Nasman, David Travis, James Grootegoed, Norman A. Jacobson, JR., David Hetzer, Lior Huli, Joshua S. Hooge
  • Patent number: 9791779
    Abstract: A method for patterning a substrate is described. The patterning method includes receiving a first patterned layer overlying a material layer to be etched on a substrate, wherein the first patterned layer is composed of a resist material having (i) material properties that provide lithographic resolution of less than about 40 nanometers when exposed to extreme ultraviolet radiation lithography, and (ii) material properties that provide a nominal etch resistance to an etch process condition. The first patterned layer is over-coated with an image reversal material such that the image reversal material fills and covers the first patterned layer. The patterning method further includes removing an upper portion of the image reversal material such that top surfaces of the first patterned layer are exposed, and removing the first patterned layer such that the image reversal material remains resulting in a second patterned layer.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: October 17, 2017
    Assignee: Tokyo Electron Limited
    Inventor: Lior Huli
  • Publication number: 20170221704
    Abstract: Techniques herein provide methods for depositing spin-on metal materials for creating metal hard mask (MHM) structures without voids in the deposition. This includes effective spin-on deposition of TiOx, ZrOx, SnOx, HFOx, TaOx, et cetera. Such materials can help to provide differentiation of material etch resistivity for differentiation. By enabling spin-on metal hard mask (MHM) for use with a multi-line layer, a slit-based or self-aligned blocking strategy can be effectively used. Techniques herein include identifying a fill material to fill particular openings in a given relief pattern, modifying a surface energy value of surfaces within the opening such that a contact angle value of an interface between the fill material in liquid form and the sidewall or floor surfaces enables gap-free or void-free filling.
    Type: Application
    Filed: January 26, 2017
    Publication date: August 3, 2017
    Inventors: Nihar Mohanty, Lior Huli, Jeffrey Smith, Richard Farrell
  • Patent number: 9711419
    Abstract: Embodiments described relate to a method and apparatus for reducing lithographic distortion. A backside of a semiconductor substrate may be texturized. Then a lithographic process may be performed on the semiconductor substrate having the texturized backside.
    Type: Grant
    Filed: August 22, 2015
    Date of Patent: July 18, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Carlos A. Fonseca, Benjamen M. Rathsack, Jeffrey Smith, Anton J. deVilliers, Lior Huli, Teruhiko Kodama, Joshua S. Hooge
  • Publication number: 20170110345
    Abstract: Provided is a nozzle system for dispensing a dispense chemical onto a substrate, the system comprising: a nozzle comprising a nozzle body and a nozzle tip; a shielding device coupled to the nozzle tip, the shielding device configured to create a mini-environment for a dispense chemical such that a partial pressure of the dispense chemical is maintained in the shielding device; wherein the nozzle system is configured to meet selected dispense objectives.
    Type: Application
    Filed: October 6, 2016
    Publication date: April 20, 2017
    Inventors: Ronald Nasman, Lior Huli
  • Publication number: 20160334709
    Abstract: Provided is a method for patterning a substrate, comprising: forming a layer of radiation-sensitive material on a substrate; preparing a pattern in the layer of radiation-sensitive material using a lithographic process, the pattern being characterized by a critical dimension (CD) and a roughness; following the preparing the pattern, performing a CD shrink process to reduce the CD to a reduced CD; and performing a growth process to grow the reduced CD to a target CD. Roughness includes a line edge roughness (LER), a line width roughness (LWR), or both LER and LWR. Performing the CD shrink process comprises: coating the pattern with a hard mask, the coating generating a hard mask coated resist; baking the hard mask coated resist in a temperature range for a time period, the baking generating a baked coated resist; and developing the baked coated resist in deionized water.
    Type: Application
    Filed: May 12, 2016
    Publication date: November 17, 2016
    Inventors: Lior Huli, Nihar Mohanty
  • Publication number: 20160141169
    Abstract: Embodiments described relate to a method and apparatus for reducing lithographic distortion. A backside of a semiconductor substrate may be texturized. Then a lithographic process may be performed on the semiconductor substrate having the texturized backside.
    Type: Application
    Filed: January 26, 2016
    Publication date: May 19, 2016
    Inventors: Carlos A. Fonseca, Benjamen M. Rathsack, Jeffrey Smith, Anton J. deVilliers, Lior Huli
  • Publication number: 20160109804
    Abstract: A method for patterning a substrate is described. The patterning method includes receiving a first patterned layer overlying a material layer to be etched on a substrate, wherein the first patterned layer is composed of a resist material having (i) material properties that provide lithographic resolution of less than about 40 nanometers when exposed to extreme ultraviolet radiation lithography, and (ii) material properties that provide a nominal etch resistance to an etch process condition. The first patterned layer is over-coated with an image reversal material such that the image reversal material fills and covers the first patterned layer. The patterning method further includes removing an upper portion of the image reversal material such that top surfaces of the first patterned layer are exposed, and removing the first patterned layer such that the image reversal material remains resulting in a second patterned layer.
    Type: Application
    Filed: October 14, 2015
    Publication date: April 21, 2016
    Inventor: Lior Huli
  • Patent number: 9281251
    Abstract: Embodiments described relate to a method and apparatus for reducing lithographic distortion. A backside of a semiconductor substrate may be texturized. Then a lithographic process may be performed on the semiconductor substrate having the texturized backside.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: March 8, 2016
    Assignee: Tokyo Electron Limited
    Inventors: Carlos A Fonseca, Anton Devilliers, Benjamen M Rathsack, Jeffrey T Smith, Lior Huli
  • Publication number: 20160043007
    Abstract: Embodiments described relate to a method and apparatus for reducing lithographic distortion. A backside of a semiconductor substrate may be texturized. Then a lithographic process may be performed on the semiconductor substrate having the texturized backside.
    Type: Application
    Filed: August 22, 2015
    Publication date: February 11, 2016
    Inventors: Carlos A. Fonseca, Benjamen M. Rathsack, Jeffrey Smith, Anton J. deVilliers, Lior Huli, Teruhiko Kodama, Joshua S. Hooge
  • Patent number: 9086631
    Abstract: A method for patterning a substrate is described. The method includes forming a layer of radiation-sensitive material on a substrate, and preparing a pattern in the layer of radiation-sensitive material using a lithographic process, wherein the pattern is characterized by a critical dimension (CD) and a roughness. Following the preparation of the pattern in the layer of radiation-sensitive material, the method further includes performing a CD slimming process to reduce the CD to a reduced CD, and performing a vapor smoothing process to reduce the roughness to a reduced roughness.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: July 21, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Lior Huli, David Hetzer
  • Patent number: 8975009
    Abstract: A method is provided for preparing a prepatterned substrate for use in DSA integration. In one example, the method includes removing a radiation-sensitive material pattern overlying a patterned cross-linked polystyrene copolymer layer by a) exposure to a solvent vapor, b) exposure to a liquid solvent, and c) repeating steps a)-b) until the radiation-sensitive material pattern is completely removed. In another example, the method includes removing a neutral layer by affecting removal of an underlying patterned radiation-sensitive material layer, which includes swelling the neutral layer; and removing the radiation-sensitive material pattern and the swollen neutral layer in portions by exposing the swollen layer and pattern to a developer solution. Swelling the neutral layer includes a) exposure to a solvent vapor; b) exposure to a liquid solvent; and c) repeating steps a)-b) until the neutral layer is sufficiently swollen to allow penetration of the developing solution through the swollen neutral layer.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: March 10, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Mark H. Somervell, David Hetzer, Lior Huli