Patents by Inventor Louis J. Serrano

Louis J. Serrano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190248221
    Abstract: Systems and methods are described for mitigating vehicle vibration through the control of a variable spring absorber that is part of a powertrain that includes the engine. In some such embodiments, an absorption frequency of the variable spring absorber is tuned in a feed forward manner based at least in part on the current engine speed and a factor indicative of the minimum repeating firing sequence cycle length associated with the current effective firing fraction (which in many implementations may be the denominator of the firing fraction).
    Type: Application
    Filed: February 12, 2018
    Publication date: August 15, 2019
    Inventors: Louis J. SERRANO, Matthew A. YOUNKINS, Vijay SRINIVASAN
  • Publication number: 20190220009
    Abstract: The present invention relates generally to techniques for improving fuel efficiency of a vehicle powered by an internal combustion engine capable of operating at various displacement levels. An autonomous driving unit or cruise controller selects when possible an engine torque output that corresponds to a fuel efficient displacement level. The resultant vehicle speed profile and NVH level is acceptable to vehicle occupants.
    Type: Application
    Filed: March 22, 2019
    Publication date: July 18, 2019
    Inventors: Ram SUBRAMANIAN, Louis J. SERRANO, Matthew A. YOUNKINS
  • Patent number: 10344692
    Abstract: A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a dynamic firing level modulation manner. A smoothing torque is determined by adaptive control that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: July 9, 2019
    Assignee: Tula Technology, Inc.
    Inventors: Masaki Nagashima, Mohammad R. Pirjaberi, Louis J. Serrano, Xin Yuan, John W. Parsels
  • Publication number: 20190184959
    Abstract: The present invention relates generally to improving the fuel efficiency of autonomous vehicles by operating either (1) at a first effective engine displacement that takes into account noise, vibration and harshness (NVH) when the vehicle is occupied or (2) at a second effective engine displacement, without concern for occupant NVH, when the vehicle is not occupied. The second effective engine displacement is typically more fuel efficient than the first effective engine displacement, but result in a higher level of NVH compared to the first effective engine displacement.
    Type: Application
    Filed: January 18, 2018
    Publication date: June 20, 2019
    Inventors: Yongyan CAO, Ying REN, Louis J. SERRANO, Robert Scott BAILEY, Ram SUBRAMANIAN
  • Publication number: 20190178180
    Abstract: Methods, devices, estimators, controllers and algorithms are described for estimating the torque profile of an engine and/or for controlling torque applied to a powertrain by one or more devices other than the engine itself to manage the net torque applied by the engine and other device(s) in manners that reduce undesirable NVH. The described approaches are particularly well suitable for use in hybrid vehicles in which the engine is operated in a skip fire or other dynamic firing level modulation manner—however they may be used in a variety of other circumstances as well. In some embodiments, the hybrid vehicle includes a motor/generator that applies the smoothing torque.
    Type: Application
    Filed: February 16, 2019
    Publication date: June 13, 2019
    Inventors: Mohammad R. PIRJABERI, Kian EISAZADEH-FAR, Steven E. CARLSON, Louis J. SERRANO
  • Publication number: 20190170074
    Abstract: In one aspect, a skip fire engine controller is described. The skip fire engine controller includes a skip fire module arranged to determine an operational firing fraction and associated cylinder load for delivering a desired engine output. The skip fire engine controller also includes a firing controller arranged to direct firings in a skip fire manner that delivers the selected operational firing fraction. Various methods, modules, lookup tables and arrangements related to the selection of a suitable operational firing fraction are also described.
    Type: Application
    Filed: February 7, 2019
    Publication date: June 6, 2019
    Inventors: Mark A. SHOST, Louis J. SERRANO, Steven E. CARLSON, Vijay SRINIVASAN, Eric J. DEFENDERFER, Nitish J. WAGH, Randall S. BEIKMANN, Jinbiao LI, Xin YUAN, Li-Chun CHIEN
  • Patent number: 10303169
    Abstract: The present invention relates generally to techniques for improving fuel efficiency of a vehicle powered by an internal combustion engine capable of operating at various displacement levels. An autonomous driving unit or cruise controller selects when possible an engine torque output that corresponds to a fuel efficient displacement level. The resultant vehicle speed profile and NVH level is acceptable to vehicle occupants.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: May 28, 2019
    Assignee: Tula Technology, Inc.
    Inventors: Ram Subramanian, Louis J. Serrano, Matthew A. Younkins
  • Publication number: 20190145329
    Abstract: A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a skip fire manner. A smoothing torque is determined that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the skip fire firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
    Type: Application
    Filed: January 14, 2019
    Publication date: May 16, 2019
    Inventors: Louis J. SERRANO, Xin YUAN, John W. PARSELS, Mohammad R. PIRJABERI, Mark A. WILCUTTS, Masaki NAGASHIMA
  • Patent number: 10259461
    Abstract: A variety of methods and arrangements are described for controlling transitions between firing fractions during skip fire or dynamic firing level modulation operation of an engine. In general, actuator first transition strategies are described in which an actuator position (e.g., cam phase, TCC slip, etc.) is changed to, or close to a target position before a corresponding firing fraction change is implemented. When the actuator change associated with a desired firing fraction change is relatively large, the firing fraction change is divided into a series of two or more firing fraction change steps. A number of intermediate target selection schemes are described as well.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: April 16, 2019
    Assignee: Tula Technology, Inc.
    Inventors: Louis J. Serrano, Steven E. Carlson
  • Patent number: 10247121
    Abstract: In one aspect, a skip fire engine controller is described. The skip fire engine controller includes a skip fire module arranged to determine an operational firing fraction and associated cylinder load for delivering a desired engine output. The skip fire engine controller also includes a firing controller arranged to direct firings in a skip fire manner that delivers the selected operational firing fraction. Various methods, modules, lookup tables and arrangements related to the selection of a suitable operational firing fraction are also described.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: April 2, 2019
    Assignees: Tula Technology, Inc., GM Global Technology Operations LLC
    Inventors: Mark A. Shost, Louis J. Serrano, Steven E. Carlson, Vijay Srinivasan, Eric J. Defenderfer, Nitish J. Wagh, Randall S. Beikmann, Jinbiao Li, Xin Yuan, Li-Chun Chien
  • Patent number: 10221786
    Abstract: A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a skip fire manner. A smoothing torque is determined that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the skip fire firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: March 5, 2019
    Assignee: Tula Technology, Inc.
    Inventors: Louis J. Serrano, Xin Yuan, John W. Parsels, Mohammad R. Pirjaberi, Mark A. Wilcutts, Masaki Nagashima
  • Publication number: 20190055894
    Abstract: Systems and methods for reducing noise or vibration generated by an internal combustion engine are described. An engine controller is arranged to operate the working chambers of the engine in a cylinder output level modulation manner A noise/vibration reduction unit actively control of a device that is not a part of the powertrain. The device is controlled in a feed forward manner to alter an NVH characteristic of the vehicle in a desired manner based at least in part on a characteristic of the cylinder output level modulation operation of the engine.
    Type: Application
    Filed: October 19, 2018
    Publication date: February 21, 2019
    Inventors: Louis J. SERRANO, Vijay SRINIVASAN, Geoffrey ROUTLEDGE, Mark A. SHOST, Biswa R. GHOSH, Mark A. WILCUTTS, Matthew A. YOUNKINS, Ying REN
  • Patent number: 10167799
    Abstract: Methods and arrangements for transitioning an engine between a deceleration cylinder cutoff (DCCO) state and an operational state are described. In one aspect, transitions from DCCO begin with reactivating cylinders to pump air to reduce the pressure in the intake manifold prior to firing any cylinders. In another aspect, transitions from DCCO, involve the use of an air pumping skip fire operational mode. After the manifold pressure has been reduced, the engine may transition to either a cylinder deactivation skip fire operational mode or other appropriate operational mode. In yet another aspect a method of transitioning into DCCO using a skip fire approach is described. In this aspect, the fraction of the working cycles that are fired is gradually reduced to a threshold firing fraction. All of the working chambers are then deactivated after reaching the threshold firing fraction.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: January 1, 2019
    Assignee: Tula Technology, Inc.
    Inventors: Louis J. Serrano, Robert C. Wang
  • Patent number: 10161328
    Abstract: Methods and controllers for dynamically altering the phase of a firing sequence during operation of an engine are described. The described methods and controllers are particularly useful in conjunction with dynamic skip fire operation of the engine.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: December 25, 2018
    Assignee: Tula Technology, Inc.
    Inventor: Louis J. Serrano
  • Patent number: 10138860
    Abstract: A variety of methods and arrangements are described for controlling transitions between effective firing fractions during dynamic firing level modulation operation of an engine in order to help reduce undesirable NVH consequences and otherwise smooth the transitions. In general, both feed forward and feedback control are utilized in the determination of the effective firing fractions during transitions such that the resulting changes in the effective firing fraction better track cylinder air charge changing dynamics associated with the transition.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: November 27, 2018
    Assignee: Tula Technology, Inc.
    Inventors: Masaki Nagashima, Mohammad R. Pirjaberi, Louis J. Serrano
  • Publication number: 20180328292
    Abstract: A system and method for dynamically varying an amount slippage of a Torque Converter Clutch (TCC) provided between an engine and a transmission of a vehicle in response to non-powertrain factors. By varying a slippage output signal, the amount of TCC slippage between the engine and the transmission can be adjusted. Small amounts of slippage, relative to large amounts of slippage, provide (a) improved vehicle fuel economy, but (b) induce more powertrain noise and vibration in the vehicle cabin. By dynamically adjusting the slippage, a tradeoff between improved fuel economy vs. a satisfying driver experience can be realized.
    Type: Application
    Filed: July 13, 2018
    Publication date: November 15, 2018
    Inventors: Vijay SRINIVASAN, Louis J. SERRANO, Siamak HASHEMI, Robert S. BAILEY, Geoffrey ROUTLEDGE
  • Publication number: 20180320614
    Abstract: In various aspects, internal combustion engines, engine controllers and methods of controlling engines are described. The engine includes a camshaft and a two cylinder sets. Cylinders in the first are deactivatable and cylinders in the second set may be fired at high or low output levels. The air charge for each fired working cycle is set based on whether a high or low torque output is selected. In some implementations, the camshaft is axially shiftable between first and second positions. First cam lobes are configured to cause their associated cylinders to intake a large air charge during intake strokes that occur when the camshaft is in the first position. Second cam lobes for cylinders in the second set cause their associated cylinders to intake a smaller air charge when the camshaft is in the second position. Second cam lobes for cylinders in the first set deactivate their associated cylinders.
    Type: Application
    Filed: July 14, 2018
    Publication date: November 8, 2018
    Inventors: Matthew A. YOUNKINS, Louis J. SERRANO
  • Publication number: 20180320615
    Abstract: Methods, devices, estimators, controllers and algorithms are described for estimating the torque profile of an engine and/or for controlling torque applied to a powertrain by one or more devices other than the engine itself to manage the net torque applied by the engine and other device(s) in manners that reduce undesirable NVH. The described approaches are particularly well suitable for use in hybrid vehicles in which the engine is operated in a skip fire or other dynamic firing level modulation manner—however they may be used in a variety of other circumstances as well. In some embodiments, the hybrid vehicle includes a motor/generator that applies the smoothing torque.
    Type: Application
    Filed: July 18, 2018
    Publication date: November 8, 2018
    Inventors: Mohammad R. PIRJABERI, Kian EISAZADEH-FAR, Steven E. CARLSON, Louis J. SERRANO
  • Patent number: 10107211
    Abstract: Methods and arrangements are described for controlling transitions between firing fractions during skip fire operation of an engine in order to help smooth the transitions. Generally, firing fractions transitions are implemented gradually, preferably in a manner that relatively closely tracks manifold filling dynamics. In some embodiments, the commanded firing fraction is altered each firing opportunity. Another approach contemplates altering the commanded firing fraction by substantially the same amount each firing opportunity for at least a portion of the transition. These approaches work particularly well when the commanded firing fraction is provided to a skip fire controller that includes an accumulator functionality that tracks the portion of a firing that has been requested, but not delivered, or vice versa.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: October 23, 2018
    Assignee: Tula Technology, Inc.
    Inventors: Mohammad R. Pirjaberi, Louis J. Serrano, Xin Yuan, Steven E. Carlson, Siamak Hashemi, Ryan A. Kuhlenbeck
  • Patent number: 10094313
    Abstract: A variety of methods and arrangements are described for controlling transitions between firing fractions during skip fire or other dynamic firing level modulation operation of an engine. In general, actuator first transition strategies are described in which an actuator position (e.g., cam phase, TCC slip, etc.) is changed to, or close to a target position before a corresponding firing fraction change is implemented. When the actuator change associated with a desired firing fraction change is relatively large, the firing fraction change is divided into a series of two or more firing fraction change steps. A number of intermediate target selection schemes are described as well.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: October 9, 2018
    Assignees: Tula Technology, Inc., GM Global Technology Operations LLC
    Inventors: Louis J. Serrano, Steven E. Carlson, Steven J. Haase, Donavan L. Dibble, Allen B. Rayl