Patents by Inventor Madhav Datta

Madhav Datta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10037956
    Abstract: The invention relates to a ball-limiting metallurgy stack for an electrical device that contains at least one copper layer disposed upon a Ti adhesion metal layer. The ball-limiting metallurgy stack resists Sn migration toward the upper metallization of the device.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: July 31, 2018
    Assignee: Intel Corporation
    Inventors: Madhav Datta, Dave Emory, Subhash M. Joshi, Susanne Menezes, Doowon Suh
  • Publication number: 20170141062
    Abstract: The invention relates to a ball-limiting metallurgy stack for an electrical device that contains at least one copper layer disposed upon a Ti adhesion metal layer. The ball-limiting metallurgy stack resists Sn migration toward the upper metallization of the device.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Madhav Datta, Dave Emory, Subhash M. Joshi, Susanne Menezes, Doowon Suh
  • Publication number: 20150132940
    Abstract: The invention relates to a ball-limiting metallurgy stack for an electrical device that contains at least one copper layer disposed upon a Ti adhesion metal layer. The ball-limiting metallurgy stack resists Sn migration toward the upper metallization of the device.
    Type: Application
    Filed: January 14, 2015
    Publication date: May 14, 2015
    Applicant: INTEL CORPORATION
    Inventors: Madhav Datta, Dave Emory, Subhash M. Joshi, Susanne Menezes, Doowon Suh
  • Patent number: 8952550
    Abstract: The invention relates to a ball-limiting metallurgy stack for an electrical device that contains at least one copper layer disposed upon a Ti adhesion metal layer. The ball-limiting metallurgy stack resists Sn migration toward the upper metallization of the device.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: February 10, 2015
    Assignee: Intel Corporation
    Inventors: Madhav Datta, Dave Emory, Subhash M. Joshi, Susanne Menezes, Doowon Suh
  • Patent number: 8299604
    Abstract: A ceramic assembly includes one or more electrically and thermally conductive pads to be thermally coupled to a heat generating device, each conductive pad is electrically isolated from each other. The ceramic assembly includes a ceramic layer to provide this electrical isolation. The ceramic layer has high thermal conductivity and high electrical resistivity. A top surface and a bottom surface of the ceramic layer are each bonded to a conductive layer, such as copper, using an intermediate joining material. A brazing process is performed to bond the ceramic layer to the conductive layer via a joining layer. The joining layer is a composite of the joining material, the ceramic layer, and the conductive layer. The top conductive layer and the joining layer are etched to form the electrically isolated conductive pads. The conductive layers are bonded to the ceramic layer using a bare ceramic approach or a metallized ceramic approach.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: October 30, 2012
    Assignee: Cooligy Inc.
    Inventors: Madhav Datta, Mark McMaster
  • Patent number: 8254422
    Abstract: A microheat exchanging assembly is configured to cool one or more heat generating devices, such as integrated circuits or laser diodes. The microheat exchanging assembly includes a first ceramic assembly thermally coupled to a first surface, and in cases, a second ceramic assembly thermally coupled to a second surface. The ceramic assembly includes one or more electrically and thermally conductive pads to be thermally coupled to a heat generating device, each conductive pad is electrically isolated from each other. The ceramic assembly includes a ceramic layer to provide this electrical isolation. A top surface and a bottom surface of the ceramic layer are each bonded to a conductive layer, such as copper, using an intermediate joining material. A brazing process is performed to bond the ceramic layer to the conductive layer via a joining layer. The joining layer is a composite of the joining material, the ceramic layer, and the conductive layer.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: August 28, 2012
    Assignee: Cooligy Inc.
    Inventors: Madhav Datta, Brandon Leong, Mark McMaster
  • Publication number: 20110073292
    Abstract: The present invention provides methods and apparatuses which achieve high heat transfer in a fluid cooling system, and which do so with a small pressure drop across the system. The present invention teaches the use of wall features on the fins of a heat exchanger to cool fluid in a fluid cooling system. The present invention also discloses high aspect ratio, high surface area structures applicable in micro-heat exchangers for fluid cooling systems and cost effective methods for manufacturing the same.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Inventors: Madhav Datta, Peng Zhou, Hae-won Choi, Brandon Leong, Mark McMaster, Douglas E. Werner
  • Patent number: 7836597
    Abstract: An structure and method of manufacturing a microstructure for use in a heat exchanger is disclosed. The heat exchanger comprises a manifold layer and an microstructured region. The manifold layer comprises a structure to deliver fluid to the microstructured region. The microstructured region is formed from multiple windowed layers formed from heat conductive layers through which a plurality of microscaled apertures have been formed by a wet etching process. The plurality of windowed layers are then coupled together to form a composite microstructure.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: November 23, 2010
    Assignee: Cooligy Inc.
    Inventors: Madhav Datta, Mark McMaster, Rick Brewer, Peng Zhou, Paul Tsao, Girish Upadhaya, Mark Munch
  • Publication number: 20100117229
    Abstract: The invention relates to a ball-limiting metallurgy stack for an electrical device that contains at least one copper layer disposed upon a Ti adhesion metal layer. The ball-limiting metallurgy stack resists Sn migration toward the upper metallization of the device.
    Type: Application
    Filed: January 12, 2010
    Publication date: May 13, 2010
    Inventors: Madhav Datta, Dave Emory, Subhash M. Joshi, Susanne Menezes, Doowon Suh
  • Publication number: 20100032143
    Abstract: A microheat exchanging assembly is configured to cool one or more heat generating devices, such as integrated circuits or laser diodes. The microheat exchanging assembly includes a first ceramic assembly thermally coupled to a first surface, and in cases, a second ceramic assembly thermally coupled to a second surface. The ceramic assembly includes one or more electrically and thermally conductive pads to be thermally coupled to a heat generating device, each conductive pad is electrically isolated from each other. The ceramic assembly includes a ceramic layer to provide this electrical isolation. A top surface and a bottom surface of the ceramic layer are each bonded to a conductive layer, such as copper, using an intermediate joining material. A brazing process is performed to bond the ceramic layer to the conductive layer via a joining layer. The joining layer is a composite of the joining material, the ceramic layer, and the conductive layer.
    Type: Application
    Filed: August 5, 2009
    Publication date: February 11, 2010
    Applicant: Cooligy Inc.
    Inventors: Madhav Datta, Brandon Leong, Mark McMaster
  • Publication number: 20100035024
    Abstract: A ceramic assembly includes one or more electrically and thermally conductive pads to be thermally coupled to a heat generating device, each conductive pad is electrically isolated from each other. The ceramic assembly includes a ceramic layer to provide this electrical isolation. The ceramic layer has high thermal conductivity and high electrical resistivity. A top surface and a bottom surface of the ceramic layer are each bonded to a conductive layer, such as copper, using an intermediate joining material. A brazing process is performed to bond the ceramic layer to the conductive layer via a joining layer. The joining layer is a composite of the joining material, the ceramic layer, and the conductive layer. The top conductive layer and the joining layer are etched to form the electrically isolated conductive pads. The conductive layers are bonded to the ceramic layer using a bare ceramic approach or a metallized ceramic approach.
    Type: Application
    Filed: August 5, 2009
    Publication date: February 11, 2010
    Applicant: COOLIGY INC.
    Inventors: Madhav Datta, Mark McMaster
  • Publication number: 20080210405
    Abstract: An structure and method of manufacturing a microstructure for use in a heat exchanger is disclosed. The heat exchanger comprises a manifold layer and an microstructured region. The manifold layer comprises a structure to deliver fluid to the microstructured region. The microstructured region is formed from multiple windowed layers formed from heat conductive layers through which a plurality of microscaled apertures have been formed by a wet etching process. The plurality of windowed layers are then coupled together to form a composite microstructure.
    Type: Application
    Filed: January 6, 2006
    Publication date: September 4, 2008
    Inventors: Madhav Datta, Mark McMaster, Rick Brewer, Peng Zhou, Paul Tsao, Girish Upadhaya, Mark Munch
  • Publication number: 20070256825
    Abstract: A cooling system includes a cooling unit configured to fit within a single drive bay of a personal computer. The cooling unit includes a fluid-to-air heat exchanger, an air mover, a pump, fluid lines, and control circuitry. The cooling system also includes a cooling loop configured to be coupled to one or more heat generating devices. The cooling loop includes the pump and the fluid-to-air heat exchanger from the cooling unit, and at least one heat exchanger coupled together via flexible fluid lines. The heat exchanger is thermally coupled to the heat generating device. The cooling unit is configured to maintain noise below a specified acoustical specification. To meet this acoustical specification, the size, position, and type of the components within the cooling unit are specifically configured.
    Type: Application
    Filed: May 3, 2007
    Publication date: November 8, 2007
    Inventors: Bruce Conway, Richard Brewer, Paul Tsao, James Hom, Douglas Werner, Peng Zhou, Girish Upadhya, Madhav Datta, Ali Firouzi, Fredric Landry
  • Publication number: 20070175621
    Abstract: A heat exchanging system uses a metallic TIM for efficient heat transfer between a heat source and a heat exchanger. The heat source is preferably an integrated circuit coupled to a circuit board. The metallic TIM preferably comprises indium. The metallic TIM is comprised of either a separate metallic TIM foil or as a deposited layer of metal material. The metallic TIM foil is mechanically joined to a first surface of the heat exchanger and to a first surface of the integrated circuit by applying sufficient pressure during clamping. Disassembly is accomplished by un-clamping the heat exchanger, the metallic TIM foil, and the integrated circuit from each other. Once disassembled, the heat exchanger and the metallic TIM foil are available to be used again. If the metallic TIM is deposited onto the heat exchanger, disassembly yields a heat exchanging sub-assembly that is also reusable.
    Type: Application
    Filed: January 31, 2006
    Publication date: August 2, 2007
    Inventors: Madhav Datta, Peng Zhou, James Hom, Mark Munch, Mark McMaster
  • Patent number: 7250678
    Abstract: The invention relates to a ball-limiting metallurgy stack for an electrical device that contains at least one copper layer disposed upon a Ti adhesion metal layer. The ball-limiting metallurgy stack resists Sn migration toward the upper metallization of the device.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: July 31, 2007
    Assignee: Intel Corporation
    Inventors: Madhav Datta, Dave Emory, Subhash M. Joshi, Susanne Menezes, Doowon Suh
  • Patent number: 7196001
    Abstract: The invention relates to a ball-limiting metallurgy stack for an electrical device that contains at least one copper layer disposed upon a Ti adhesion metal layer. The ball-limiting metallurgy stack resists Sn migration toward the upper metallization of the device.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: March 27, 2007
    Assignee: Intel Corporation
    Inventors: Madhav Datta, Dave Emory, Subhash M. Joshi, Susanne Menezes, Doowon Suh
  • Publication number: 20060148233
    Abstract: The invention relates to a ball-limiting metallurgy stack for an electrical device that contains at least one copper layer disposed upon a Ti adhesion metal layer. The ball-limiting metallurgy stack resists Sn migration toward the upper metallization of the device.
    Type: Application
    Filed: March 1, 2006
    Publication date: July 6, 2006
    Inventors: Madhav Datta, Dave Emory, Subhash Joshi, Susanne Menezes, Doowon Suh
  • Patent number: 6977224
    Abstract: A method comprising introducing an interconnect structure in an opening through a dielectric over a contact point, and introducing a conductive shunt material through a chemically-induced oxidation-reduction reaction. A method comprising introducing an interconnect structure in an opening through a dielectric over a contact point, introducing a conductive shunt material having an oxidation number over an exposed surface of the interconnect structure, and reducing the oxidation number of the shunt. An apparatus comprising a substrate comprising a device having contact point, a dielectric layer overlying the device with an opening to the contact point, and an interconnect structure disposed in the opening comprising an interconnect material and a different conductive shunt material.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: December 20, 2005
    Assignee: Intel Corporation
    Inventors: Valery M. Dubin, Christopher D. Thomas, Paul McGregor, Madhav Datta
  • Patent number: 6917106
    Abstract: A ball-limiting metallurgy stack is disclosed for an electrical device that contains at least one copper layer disposed upon a titanium adhesion metal layer. The ball-limiting metallurgy stack resists tin migration toward the upper metallization of the device. An etch process flow is also disclosed which resists the redepostion of the tin during etching of a copper layer.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: July 12, 2005
    Assignee: Intel Corporation
    Inventor: Madhav Datta
  • Patent number: 6878465
    Abstract: The present invention describes a method including providing a component, the component having a bond pad; forming a passivation layer over the component; forming a via in the passivation layer to uncover the bond pad; and forming an under bump metallurgy (UBM) over the passivation layer, in the via, and over the bond pad, in which the UBM includes an alloy of Aluminum and Magnesium. The present invention also describes an under bump metallurgy (UBM) that includes a lower layer, the lower layer including an alloy of Aluminum and Magnesium; and an upper layer located over the lower layer.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: April 12, 2005
    Assignee: Intel Corporation
    Inventors: Peter K. Moon, Zhiyong Ma, Madhav Datta