Patents by Inventor Madhusudan K. Iyengar

Madhusudan K. Iyengar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9027360
    Abstract: Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: May 12, 2015
    Assignee: International Business Machines Corporation
    Inventors: Timothy J. Chainer, David P. Graybill, Madhusudan K. Iyengar, Vinod Kamath, Bejoy J. Kochuparambil, Roger R. Schmidt, Mark E. Steinke
  • Publication number: 20150116941
    Abstract: Methods are provided for facilitating cooling of an electronic component. The method includes providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 30, 2015
    Inventors: Timothy J. CHAINER, David P. GRAYBILL, Madhusudan K. IYENGAR, Vinod KAMATH, Bejoy J. KOCHUPARAMBIL, Roger R. SCHMIDT, Mark E. STEINKE
  • Publication number: 20150114602
    Abstract: Methods are provided for facilitating cooling of an electronic component. The methods include providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
    Type: Application
    Filed: December 9, 2014
    Publication date: April 30, 2015
    Inventors: Timothy J. CHAINER, David P. GRAYBILL, Madhusudan K. IYENGAR, Vinod KAMATH, Bejoy J. KOCHUPARAMBIL, Roger R. SCHMIDT, Mark E. STEINKE
  • Publication number: 20150114601
    Abstract: Methods are provided for facilitating cooling of an electronic component. The method includes providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 30, 2015
    Inventors: Timothy J. CHAINER, David P. GRAYBILL, Madhusudan K. IYENGAR, Vinod KAMATH, Bejoy J. KOCHUPARAMBIL, Roger R. SCHMIDT, Mark E. STEINKE
  • Publication number: 20150109730
    Abstract: Cooling apparatuses and methods are provided facilitating transfer of heat from a working fluid to a coolant. The cooling apparatus includes a vapor condenser which includes a condenser housing with a condensing chamber accommodating the working fluid and coolant, which are in direct contact within the condensing chamber and are immiscible fluids. The condensing chamber includes a working fluid vapor layer and a working fluid liquid layer; and a working fluid vapor inlet facilitates flow of fluid vapor into the condensing chamber, and a working fluid vapor outlet facilitates egress of working fluid liquid from the condensing chamber. A coolant inlet structure facilitates ingress of coolant into the working fluid vapor layer of the condensing chamber in direct contact with the working fluid vapor to facilitate condensing the vapor into working fluid liquid, and the coolant outlet structure facilitates subsequent egress of coolant from the condensing chamber.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 23, 2015
    Applicant: International Business Machines Corporation
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Milnes P. DAVID, Dustin W. DEMETRIOU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20150109728
    Abstract: A cooled electronic system and cooling method are provided, wherein a field-replaceable bank of electronic components is cooled by an apparatus which includes an enclosure at least partially surrounding and forming a compartment about the electronic components, a fluid disposed within the compartment, and a heat sink associated with the enclosure. The field-replaceable bank extends, in part, through the enclosure to facilitate operative docking of the electronic components into one or more respective receiving sockets of the electronic system. The electronic components of the field-replaceable bank are, at least partially, immersed within the fluid to facilitate immersion-cooling of the components, and the heat sink facilitates rejection of heat from the fluid disposed within the compartment. In one embodiment, multiple thermal conductors project from an inner surface of the enclosure into the compartment to facilitate transfer of heat from the fluid to the heat sink.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 23, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Milnes P. DAVID, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20150107801
    Abstract: Cooling apparatuses, cooled electronic modules, and methods of fabrication are provided which facilitate heat transfer from one or more electronic components to a coolant. The cooling apparatus includes a coolant-cooled heat sink with a thermally conductive structure having a coolant-carrying compartment including a varying cross-sectional coolant flow area through which coolant flows in a direction substantially parallel to a main heat transfer surface of the structure coupled to the electronic component(s). The coolant-cooled heat sink includes a coolant inlet and a coolant outlet in fluid communication with the coolant-carrying compartment, and the coolant flow area of the coolant-carrying compartment decreases, at least in part, in a direction of coolant flow through the coolant-carrying compartment.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 23, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Milnes P. DAVID, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20150109729
    Abstract: Cooled electronic systems and cooling methods are provided, wherein a field-replaceable bank of electronic components is cooled by an apparatus which includes an enclosure at least partially surrounding and forming a compartment about the electronic components, a fluid disposed within the compartment, and a heat sink associated with the electronic system. The field-replaceable bank extends, in part, through the enclosure to facilitate operative docking of the electronic components into, for instance, one or more respective receiving sockets of the electronic system. The electronic components of the field-replaceable bank are, at least partially, immersed within the fluid to facilitate immersion-cooling of the components, and the heat sink is configured and disposed to physically couple to the enclosure and facilitates rejection of heat from the fluid disposed within the compartment when the field-replaceable bank of electronic components is operatively inserted into the electronic system.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 23, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Milnes P. DAVID, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Roger R. SCHMIDT, Robert E. SIMONS
  • Publication number: 20150109735
    Abstract: Cooling apparatuses and methods of fabricating thereof are provided which facilitate pumped immersion-cooling of an electronic component(s). The cooling apparatus includes an enclosure having a compartment accommodating the electronic component(s), and dielectric fluid within the compartment at least partially immersing the electronic component(s). A liquid-cooled heat sink is associated with the enclosure to cool at least one cooling surface associated with the compartment, and facilitate heat transfer to the heat sink from the electronic component(s) via the dielectric fluid. A pump is disposed external to the compartment and in fluid communication therewith to facilitate pumped dielectric fluid flow through the compartment. The pumped dielectric fluid flow through the compartment enhances heat transfer from the electronic component(s) to the liquid-cooled heat sink via the cooling surface(s).
    Type: Application
    Filed: October 21, 2013
    Publication date: April 23, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Milnes P. DAVID, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Roger R. SCHMIDT, Robert E. SIMONS
  • Patent number: 9009968
    Abstract: A cooling method is provided which includes providing a cooling apparatus that includes one or more coolant-cooled structures attached to one or more electronic components, one or more coolant conduits, and one or more coolant manifolds. The coolant-cooled structure(s) includes one or more coolant-carrying channels, and the coolant manifolds includes one or more rotatable manifold sections. One coolant conduit couples in fluid communication a respective rotatable manifold section and the coolant-carrying channel(s) of a respective coolant-cooled structure. The respective rotatable manifold section is rotatable relative to another portion of the coolant manifold to facilitate detaching of the coolant-cooled structure from its associated electronic component while maintaining the coolant-cooled structure in fluid communication with the respective rotatable manifold section through the one coolant conduit, which in one embodiment, is a substantially rigid coolant conduit.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: April 21, 2015
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Eric J. McKeever, Robert E. Simons
  • Patent number: 9009971
    Abstract: A method is provided for facilitating cooling of electronic components of an electronic system. The method includes: providing a housing at least partially surrounding and forming a compartment about the components, and providing an immersion-cooling fluid is disposed within the compartment, at least one component of the electronic system being at least partially non-immersed within the fluid in the compartment; providing a wicking film element physically coupled to a main surface of the at least one component and partially disposed within the fluid within the compartment; and securing, via a coupling element, the wicking film element in physical coupling to the main surface of the at least one component without the coupling element overlying the main surface of the component(s). As an enhancement, the wicking film element wraps over the component to physically couple to two opposite main sides of the component.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: April 21, 2015
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9013872
    Abstract: A method of fabricating a cooling unit is provided to facilitate cooling coolant passing through a coolant loop. The cooling unit includes one or more heat rejection units and an elevated coolant tank. The heat rejection unit(s) rejects heat from coolant passing through the coolant loop to air passing across the heat rejection unit. The heat rejection unit(s) includes one or more heat exchange assemblies coupled to the coolant loop for at least a portion of coolant to pass through the one or more heat exchange assemblies. The elevated coolant tank, which is elevated above at least a portion of the coolant loop, is coupled in fluid communication with the one or more heat exchange assemblies of the heat rejection unit(s), and facilitates return of coolant to the coolant loop at a substantially constant pressure.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: April 21, 2015
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Patent number: 8985847
    Abstract: Monitoring of cooling of an electronic component is provided, which includes: determining a current thermal resistance associated with one or more of the electronic component, a heat sink coupled to the electronic component, or a thermal interface coupling the electronic component and the heat sink; and determining, by a processor, whether the current thermal resistance exceeds a set thermal resistance threshold, and responsive to the current thermal resistance exceeding the set thermal resistance threshold, indicating a thermal resistance fault. As an enhancement, rate of change over time of the thermal resistance is determined, and compared against a rate of change threshold, and if exceeding the threshold, a rate of change thermal resistance warning is provided.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons
  • Publication number: 20150062804
    Abstract: Apparatuses are provided for cooling an electronic component(s), which include a heat sink coupled to the electronic component(s), and having a coolant-carrying channel for a first coolant. The first coolant provides two-phase cooling to the electronic component(s), and is discharged from the heat sink as coolant exhaust, which includes coolant vapor. The apparatus further includes a node-level condensation module coupled to the heat sink to receive the coolant exhaust. The condensation module is cooled via a second coolant, and facilitates condensing the coolant vapor in the coolant exhaust. A controller automatically controls the liquid-cooling of the heat sink and/or the liquid-cooling of the node-level condensation module. A control valve adjusts a flow rate of the second coolant of the node-level condensation module, with the valve being automatically controlled by the controller based on a characterization of the coolant vapor in the coolant exhaust.
    Type: Application
    Filed: October 21, 2014
    Publication date: March 5, 2015
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Milnes P. DAVID, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS
  • Patent number: 8966922
    Abstract: A cooling apparatus and method are provided for cooling an electronic subsystem of an electronics rack. The cooling apparatus includes a local cooling station, which has a liquid-to-air heat exchanger and ducting for directing a cooling airflow across the heat exchanger. A cooling subsystem is associated with the electronic subsystem of the rack, and includes either a housing facilitating immersion cooling of electronic components of the electronic subsystem, or one or more liquid-cooled structures providing conductive cooling to the electronic components of the electronic subsystem. A coolant loop couples the cooling subsystem to the liquid-to-air heat exchanger of the local cooling station. In operation, heat is transferred via circulating coolant from the electronic subsystem and rejected in the liquid-to-air heat exchanger of the local cooling station to the cooling airflow passing across the liquid-to-air heat exchanger. In one embodiment, the cooling airflow is outdoor air.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: March 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 8965748
    Abstract: Method, system and computer program product for estimating the overall energy efficiency of a data center over a period of time. In one embodiment, a computer processor coupled to computer readable memory is configured to receive time parameters indicating the period of time over which the overall energy efficiency of the data center is to be estimated, receive component parameters indicating the performance characteristics of data center components and the operational interactions between the data center components, simulate the operation and interaction of the data center components based, at least in part, on the component parameters for the period of time over which the energy efficiency is estimated, and output results of the simulation to estimate the overall energy efficiency of the data center.
    Type: Grant
    Filed: December 8, 2012
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Madhusudan K. Iyengar, Robert R. Schmidt
  • Patent number: 8964391
    Abstract: Cooling methods are provided for facilitating pumped immersion-cooling of electronic components. The cooling method includes: providing a housing forming a compartment about one or more components, and providing a supply manifold, a return manifold, and coupling a coolant loop coupling in fluid communication the supply and return manifolds and the housing. Coolant flowing through the coolant loop flows through the compartment of the housing and, at least partially, immersion-cools the component(s) by flow boiling. A pump facilitates circulation of coolant within the loop, and a coolant bypass line is coupled between the supply and return manifolds. The return manifold includes a mixed-phase manifold section, and the bypass line provides coolant from the supply manifold directly to the mixed-phase manifold section. Coolant flows from the coolant bypass line into the mixed-phase manifold section in a direction counter to the direction of any coolant vapor flow within that manifold section.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 8964375
    Abstract: Techniques for cooling in a data center are provided. In one aspect, a computer equipment rack is provided comprising one or more air inlets; one or more exhaust outlets; and one or more of: an air inlet duct mounted to the computer equipment rack surrounding at least a portion of the air inlets, the air inlet duct having a lateral dimension that approximates a lateral dimension of the computer equipment rack and a length that is less than a length of the computer equipment rack, and an air exhaust duct mounted to the computer equipment rack surrounding at least a portion of the exhaust outlets, the air exhaust duct having a lateral dimension that approximates the lateral dimension of the computer equipment rack and a length that is less than the length of the computer equipment rack.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Alan Claassen, Hendrik F. Hamann, Madhusudan K. Iyengar, James A. Lacey, Yves C. Martin, Roger R. Schmidt, Theodore G. van Kessel
  • Patent number: 8964390
    Abstract: Cooling apparatuses and methods are provided for facilitating pumped immersion-cooling of electronic components. The cooling apparatus includes a housing forming a compartment about one or more components, a supply manifold, a return manifold, and a coolant loop coupling in fluid communication the supply and return manifolds and the housing. Coolant flowing through the coolant loop flows through the compartment of the housing and at least partially immersion-cools the component(s) by flow boiling. A pump facilitates circulation of coolant within the loop, and a coolant bypass line is coupled between the supply and return manifolds. The return manifold includes a mixed-phase manifold section, and the bypass line provides coolant from the supply manifold directly to the mixed-phase manifold section. Coolant flows from the coolant bypass line into the mixed-phase manifold section in a direction counter to the direction of any coolant vapor flow within that manifold section.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 8955346
    Abstract: Apparatus and method are provided for cooling an electronic component. The apparatus includes a coolant-cooled structure in thermal communication with the component(s) to be cooled, and a coolant-to-refrigerant heat exchanger coupled in fluid communication with the coolant-cooled structure via a coolant loop to receive coolant from and supply coolant to the coolant-cooled structure. The apparatus further includes a refrigerant loop coupled in fluid communication with the coolant-to-refrigerant heat exchanger, and the heat exchanger cools coolant passing therethrough by dissipating heat from the coolant in the coolant loop to refrigerant in the refrigerant loop. A controllable coolant heater is associated with the coolant loop for providing an adjustable heat load on the coolant in the coolant loop to ensure at least a minimum heat load is dissipated from the coolant to the refrigerant passing through the heat exchanger.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: February 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: Levi A. Campbell, Richard C. Chu, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Robert E. Simons