Patents by Inventor Mai Akiba

Mai Akiba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9847381
    Abstract: By controlling the luminance of light emitting element not by means of a voltage to be impressed to the TFT but by means of controlling a current that flows to the TFT in a signal line drive circuit, the current that flows to the light emitting element is held to a desired value without depending on the characteristics of the TFT. Further, a voltage of inverted bias is impressed to the light emitting element every predetermined period. Since a multiplier effect is given by the two configurations described above, it is possible to prevent the luminance from deteriorating due to a deterioration of the organic luminescent layer, and further, it is possible to maintain the current that flows to the light emitting element to a desired value without depending on the characteristics of the TFT.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: December 19, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Mai Akiba, Jun Koyama
  • Publication number: 20170309212
    Abstract: It is an object to provide a semiconductor display device with high reliability. Further, it is an object to provide a semiconductor display device which can reduce power consumption. A decoder is provided for a scan line driver circuit and operates such that, in accordance with a signal input to the scan line driver circuit, a pulse is sequentially input only to scan lines included in pixels of rows performing display and a pulse is not input to scan lines included in pixels of rows at which display is not performed. Then, all pixels or part of pixels in the line selected by the pulse is supplied with a video signal from a signal line driver circuit, whereby display of an image is performed in pixels arranged in the specific area of the pixel portion.
    Type: Application
    Filed: July 11, 2017
    Publication date: October 26, 2017
    Inventors: Atsushi UMEZAKI, Mai AKIBA
  • Patent number: 9715845
    Abstract: It is an object to provide a semiconductor display device with high reliability. Further, it is an object to provide a semiconductor display device which can reduce power consumption. A decoder is provided for a scan line driver circuit and operates such that, in accordance with a signal input to the scan line driver circuit, a pulse is sequentially input only to scan lines included in pixels of rows performing display and a pulse is not input to scan lines included in pixels of rows at which display is not performed. Then, all pixels or part of pixels in the line selected by the pulse is supplied with a video signal from a signal line driver circuit, whereby display of an image is performed in pixels arranged in the specific area of the pixel portion.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: July 25, 2017
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Atsushi Umezaki, Mai Akiba
  • Publication number: 20170047388
    Abstract: By controlling the luminance of light emitting element not by means of a voltage to be impressed to the TFT but by means of controlling a current that flows to the TFT in a signal line drive circuit, the current that flows to the light emitting element is held to a desired value without depending on the characteristics of the TFT. Further, a voltage of inverted bias is impressed to the light emitting element every predetermined period. Since a multiplier effect is given by the two configurations described above, it is possible to prevent the luminance from deteriorating due to a deterioration of the organic luminescent layer, and further, it is possible to maintain the current that flows to the light emitting element to a desired value without depending on the characteristics of the TFT.
    Type: Application
    Filed: November 1, 2016
    Publication date: February 16, 2017
    Inventors: Shunpei Yamazaki, Mai Akiba, Jun Koyama
  • Publication number: 20170047387
    Abstract: By controlling the luminance of light emitting element not by means of a voltage to be impressed to the TFT but by means of controlling a current that flows to the TFT in a signal line drive circuit, the current that flows to the light emitting element is held to a desired value without depending on the characteristics of the TFT. Further, a voltage of inverted bias is impressed to the light emitting element every predetermined period. Since a multiplier effect is given by the two configurations described above, it is possible to prevent the luminance from deteriorating due to a deterioration of the organic luminescent layer, and further, it is possible to maintain the current that flows to the light emitting element to a desired value without depending on the characteristics of the TFT.
    Type: Application
    Filed: November 1, 2016
    Publication date: February 16, 2017
    Inventors: Shunpei Yamazaki, Mai Akiba, Jun Koyama
  • Publication number: 20160284271
    Abstract: By controlling the luminance of light emitting element not by means of a voltage to be impressed to the TFT but by means of controlling a current that flows to the TFT in a signal line drive circuit, the current that flows to the light emitting element is held to a desired value without depending on the characteristics of the TFT. Further, a voltage of inverted bias is impressed to the light emitting element every predetermined period. Since a multiplier effect is given by the two configurations described above, it is possible to prevent the luminance from deteriorating due to a deterioration of the organic luminescent layer, and further, it is possible to maintain the current that flows to the light emitting element to a desired value without depending on the characteristics of the TFT.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Inventors: Shunpei Yamazaki, Mai Akiba, Jun Koyama
  • Publication number: 20160227186
    Abstract: An image processing method to obtain a high sense of depth or high stereoscopic effect for an image and a display device utilizing the method are provided. Image data of an image is separated into image data of a plurality of objects and a background. A feature amount is obtained from the image data of each object, so that the objects are identified. The relative distance between viewer's eye and any of the objects is determined by the data of the sizes of the objects in the image and the sizes of the objects stored in the database. The image data of each object is processed so that an object with a shorter relative distance is enlarged. The image data of each object after image processing is combined with the image data of the background, so that a sense of depth or stereoscopic effect of an image is increased.
    Type: Application
    Filed: April 6, 2016
    Publication date: August 4, 2016
    Inventors: Jun KOYAMA, Mai AKIBA
  • Patent number: 9368527
    Abstract: By controlling the luminance of light emitting element not by means of a voltage to be impressed to the TFT but by means of controlling a current that flows to the TFT in a signal line drive circuit, the current that flows to the light emitting element is held to a desired value without depending on the characteristics of the TFT. Further, a voltage of inverted bias is impressed to the light emitting element every predetermined period. Since a multiplier effect is given by the two configurations described above, it is possible to prevent the luminance from deteriorating due to a deterioration of the organic luminescent layer, and further, it is possible to maintain the current that flows to the light emitting element to a desired value without depending on the characteristics of the TFT.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: June 14, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Mai Akiba, Jun Koyama
  • Publication number: 20160111451
    Abstract: A semiconductor device production system using a laser crystallization method is provided which can avoid forming grain boundaries in a channel formation region of a TFT, thereby preventing grain boundaries from lowering the mobility of the TFT greatly, from lowering ON current, and from increasing OFF current. Rectangular or stripe pattern depression and projection portions are formed on an insulating film. A semiconductor film is formed on the insulating film. The semiconductor film is irradiated with continuous wave laser light by running the laser light along the stripe pattern depression and projection portions of the insulating film or along the major or minor axis direction of the rectangle. Although continuous wave laser light is most preferred among laser light, it is also possible to use pulse oscillation laser light in irradiating the semiconductor film.
    Type: Application
    Filed: October 27, 2015
    Publication date: April 21, 2016
    Inventors: Atsuo ISOBE, Shunpei YAMAZAKI, Koji DAIRIKI, Hiroshi SHIBATA, Chiho KOKUBO, Tatsuya ARAO, Masahiko HAYAKAWA, Hidekazu MIYAIRI, Akihisa SHIMOMURA, Koichiro TANAKA, Mai AKIBA
  • Patent number: 9313479
    Abstract: An image processing method to obtain a high sense of depth or high stereoscopic effect for an image and a display device utilizing the method are provided. Image data of an image is separated into image data of a plurality of objects and a background. A feature amount is obtained from the image data of each object, so that the objects are identified. The relative distance between viewer's eye and any of the objects is determined by the data of the sizes of the objects in the image and the sizes of the objects stored in the database. The image data of each object is processed so that an object with a shorter relative distance is enlarged. The image data of each object after image processing is combined with the image data of the background, so that a sense of depth or stereoscopic effect of an image is increased.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: April 12, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Mai Akiba
  • Patent number: 9276224
    Abstract: The present invention has an object of providing a light-emitting device including an OLED formed on a plastic substrate, which prevents degradation due to penetration of moisture or oxygen. On a plastic substrate, a plurality of films for preventing oxygen or moisture from penetrating into an organic light-emitting layer in the OLED (“barrier films”) and a film having a smaller stress than the barrier films (“stress relaxing film”), the film being interposed between the barrier films, are provided. Owing to a laminate structure, if a crack occurs in one of the barrier films, the other barrier film(s) can prevent moisture or oxygen from penetrating into the organic light emitting layer. The stress relaxing film, which has a smaller stress than the barrier films, is interposed between the barrier films, making it possible to reduce stress of the entire sealing film. Therefore, a crack due to stress hardly occurs.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: March 1, 2016
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Toru Takayama, Mai Akiba
  • Publication number: 20160027815
    Abstract: By controlling the luminance of light emitting element not by means of a voltage to be impressed to the TFT but by means of controlling a current that flows to the TFT in a signal line drive circuit, the current that flows to the light emitting element is held to a desired value without depending on the characteristics of the TFT. Further, a voltage of inverted bias is impressed to the light emitting element every predetermined period. Since a multiplier effect is given by the two configurations described above, it is possible to prevent the luminance from deteriorating due to a deterioration of the organic luminescent layer, and further, it is possible to maintain the current that flows to the light emitting element to a desired value without depending on the characteristics of the TFT.
    Type: Application
    Filed: October 5, 2015
    Publication date: January 28, 2016
    Inventors: Shunpei YAMAZAKI, Mai Akiba, Jun Koyama
  • Patent number: 9210411
    Abstract: An image processing method to obtain a high sense of depth or high stereoscopic effect for an image and a display device utilizing the method are provided. Image data of an image is separated into image data of a plurality of objects and a background. A feature amount is obtained from the image data of each object, so that the objects are identified. The relative distance between viewer's eye and any of the objects is determined by the data of the sizes of the objects in the image and the sizes of the objects stored in the database. The image data of each object is processed so that an object with a shorter relative distance is enlarged. The image data of each object after image processing is combined with the image data of the background, so that a sense of depth or stereoscopic effect of an image is increased.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: December 8, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Mai Akiba
  • Patent number: 9178069
    Abstract: A semiconductor device production system using a laser crystallization method is provided which can avoid forming grain boundaries in a channel formation region of a TFT, thereby preventing grain boundaries from lowering the mobility of the TFT greatly, from lowering ON current, and from increasing OFF current. Rectangular or stripe pattern depression and projection portions are formed on an insulating film. A semiconductor film is formed on the insulating film. The semiconductor film is irradiated with continuous wave laser light by running the laser light along the stripe pattern depression and projection portions of the insulating film or along the major or minor axis direction of the rectangle. Although continuous wave laser light is most preferred among laser light, it is also possible to use pulse oscillation laser light in irradiating the semiconductor film.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: November 3, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Shunpei Yamazaki, Koji Dairiki, Hiroshi Shibata, Chiho Kokubo, Tatsuya Arao, Masahiko Hayakawa, Hidekazu Miyairi, Akihisa Shimomura, Koichiro Tanaka, Mai Akiba
  • Patent number: 9178168
    Abstract: The present invention has an object of providing a light-emitting device including an OLED formed on a plastic substrate, which prevents degradation due to penetration of moisture or oxygen. On a plastic substrate, a plurality of films for preventing oxygen or moisture from penetrating into an organic light-emitting layer in the OLED (“barrier films”) and a film having a smaller stress than the barrier films (“stress relaxing film”), the film being interposed between the barrier films, are provided. Owing to a laminate structure, if a crack occurs in one of the barrier films, the other barrier film(s) can prevent moisture or oxygen from penetrating into the organic light emitting layer. The stress relaxing film, which has a smaller stress than the barrier films, is interposed between the barrier films, making it possible to reduce stress of the entire sealing film. Therefore, a crack due to stress hardly occurs.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: November 3, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toru Takayama, Mai Akiba
  • Patent number: 9165952
    Abstract: By controlling the luminance of light emitting element not by means of a voltage to be impressed to the TFT but by means of controlling a current that flows to the TFT in a signal line drive circuit, the current that flows to the light emitting element is held to a desired value without depending on the characteristics of the TFT. Further, a voltage of inverted bias is impressed to the light emitting element every predetermined period. Since a multiplier effect is given by the two configurations described above, it is possible to prevent the luminance from deteriorating due to a deterioration of the organic luminescent layer, and further, it is possible to maintain the current that flows to the light emitting element to a desired value without depending on the characteristics of the TFT.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: October 20, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Mai Akiba, Jun Koyama
  • Patent number: 9166180
    Abstract: The present invention has an object of providing a light-emitting device including an OLED formed on a plastic substrate, which prevents degradation due to penetration of moisture or oxygen. On a plastic substrate, a plurality of films for preventing oxygen or moisture from penetrating into an organic light-emitting layer in the OLED (“barrier films”) and a film having a smaller stress than the barrier films (“stress relaxing film”), the film being interposed between the barrier films, are provided. Owing to a laminate structure, if a crack occurs in one of the barrier films, the other barrier film(s) can prevent moisture or oxygen from penetrating into the organic light emitting layer. The stress relaxing film, which has a smaller stress than the barrier films, is interposed between the barrier films, making it possible to reduce stress of the entire sealing film. Therefore, a crack due to stress hardly occurs.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: October 20, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toru Takayama, Mai Akiba
  • Patent number: 9013303
    Abstract: One feature of the present invention is a product management system that includes a package body for packing a product attached with an ID tag, and a reader/writer. The ID tag includes a thin film integrated circuit portion and an antenna, the package body includes a resonance circuit portion having an antenna coil and a capacitor, and the resonance circuit portion can communicate with the reader/writer and the ID tag. Accordingly, the stability of communication between an ID tag attached to a product and an R/W can be secured, and management of products can be conducted simply and efficiently, even if a product is packed by a package body.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: April 21, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuyuki Arai, Mai Akiba, Yuko Tachimura, Yohei Kanno
  • Publication number: 20150041817
    Abstract: By controlling the luminance of light emitting element not by means of a voltage to be impressed to the TFT but by means of controlling a current that flows to the TFT in a signal line drive circuit, the current that flows to the light emitting element is held to a desired value without depending on the characteristics of the TFT. Further, a voltage of inverted bias is impressed to the light emitting element every predetermined period. Since a multiplier effect is given by the two configurations described above, it is possible to prevent the luminance from deteriorating due to a deterioration of the organic luminescent layer, and further, it is possible to maintain the current that flows to the light emitting element to a desired value without depending on the characteristics of the TFT.
    Type: Application
    Filed: October 27, 2014
    Publication date: February 12, 2015
    Inventors: Shunpei Yamazaki, Mai Akiba, Jun Koyama
  • Publication number: 20140346488
    Abstract: The present invention has an object of providing a light-emitting device including an OLED formed on a plastic substrate, which prevents degradation due to penetration of moisture or oxygen. On a plastic substrate, a plurality of films for preventing oxygen or moisture from penetrating into an organic light-emitting layer in the OLED (“barrier films”) and a film having a smaller stress than the barrier films (“stress relaxing film”), the film being interposed between the barrier films, are provided. Owing to a laminate structure, if a crack occurs in one of the barrier films, the other barrier film(s) can prevent moisture or oxygen from penetrating into the organic light emitting layer. The stress relaxing film, which has a smaller stress than the barrier films, is interposed between the barrier films, making it possible to reduce stress of the entire sealing film. Therefore, a crack due to stress hardly occurs.
    Type: Application
    Filed: August 7, 2014
    Publication date: November 27, 2014
    Inventors: Shunpei YAMAZAKI, Toru TAKAYAMA, Mai AKIBA