Patents by Inventor Mai Akiba

Mai Akiba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7863824
    Abstract: To provide a light emitting device without nonuniformity of luminance, a correcting circuit for correcting a video signal supplied to each pixel to a light emitting device. The correcting circuit is stored with data of a dispersion of a characteristic of a driving TFT among pixels and data of a change over time of luminance of a light emitting element. Further, by correcting a video signal inputted to the light emitting device in conformity with a characteristic of the driving TFT of each pixel and a degree of a deterioration of the light emitting element based on the over-described two data, nonuniformity of luminance caused by a deterioration of an electroluminescent layer and nonuniformity of luminance caused by dispersion of a characteristic of the driving TFT are restrained.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: January 4, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hajime Kimura, Mai Akiba, Aya Anzai, Yu Yamazaki
  • Publication number: 20100328299
    Abstract: By controlling the luminance of light emitting element not by means of a voltage to be impressed to the TFT but by means of controlling a current that flows to the TFT in a signal line drive circuit, the current that flows to the light emitting element is held to a desired value without depending on the characteristics of the TFT. Further, a voltage of inverted bias is impressed to the light emitting element every predetermined period. Since a multiplier effect is given by the two configurations described above, it is possible to prevent the luminance from deteriorating due to a deterioration of the organic luminescent layer, and further, it is possible to maintain the current that flows to the light emitting element to a desired value without depending on the characteristics of the TFT.
    Type: Application
    Filed: September 7, 2010
    Publication date: December 30, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Mai Akiba, Jun Koyama
  • Publication number: 20100295683
    Abstract: A semiconductor device typified by a wireless tag, which has improved mechanical strength, can be formed by a more simple process at a low cost and prevent radio waves from being shielded, and a manufacturing method of the semiconductor device. According to the invention, a wireless tag includes a thin film integrated circuit formed of an isolated TFT having a thin film semiconductor film. The wireless tag may be attached directly to an object, or attached to a flexible support such as plastic and paper before being attached to an object. The wireless tag of the invention may include an antenna as well as the thin film integrated circuit. The antenna allows to communicate signals between a reader/writer and the thin film integrated circuit, and to supply a power source voltage from the reader/writer to the thin film integrated circuit.
    Type: Application
    Filed: July 29, 2010
    Publication date: November 25, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Jun KOYAMA, Mai AKIBA
  • Patent number: 7795618
    Abstract: By controlling the luminance of light emitting element not by means of a voltage to be impressed to the TFT but by means of controlling a current that flows to the TFT in a signal line drive circuit, the current that flows to the light emitting element is held to a desired value without depending on the characteristics of the TFT. Further, a voltage of inverted bias is impressed to the light emitting element every predetermined period. Since a multiplier effect is given by the two configurations described above, it is possible to prevent the luminance from deteriorating due to a deterioration of the organic luminescent layer, and further, it is possible to maintain the current that flows to the light emitting element to a desired value without depending on the characteristics of the TFT.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: September 14, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Mai Akiba, Jun Koyama
  • Patent number: 7768405
    Abstract: A semiconductor device typified by a wireless tag, which has improved mechanical strength, can be formed by a more simple process at a low cost and prevent radio waves from being shielded, and a manufacturing method of the semiconductor device. According to the invention, a wireless tag includes a thin film integrated circuit formed of an isolated TFT having a thin film semiconductor film. The wireless tag may be attached directly to an object, or attached to a flexible support such as plastic and paper before being attached to an object. The wireless tag of the invention may include an antenna as well as the thin film integrated circuit. The antenna allows to communicate signals between a reader/writer and the thin film integrated circuit, and to supply a power source voltage from the reader/writer to the thin film integrated circuit.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: August 3, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd
    Inventors: Shunpei Yamazaki, Jun Koyama, Mai Akiba
  • Patent number: 7749818
    Abstract: An objective is to provide a method of manufacturing a semiconductor device, and a semiconductor device manufactured by using the manufacturing method, in which a laser crystallization method is used that is capable of preventing the formation of grain boundaries in TFT channel formation regions, and is capable of preventing conspicuous drops in TFT mobility, reduction in the ON current, and increases in the OFF current, all due to grain boundaries. Stripe shape or rectangular shape unevenness or opening is formed. Continuous wave laser light is then irradiated to a semiconductor film formed on an insulating film. Note that although it is most preferable to use continuous wave laser light at this point, pulse wave oscillation laser light may also be used.
    Type: Grant
    Filed: January 28, 2003
    Date of Patent: July 6, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Shunpei Yamazaki, Chiho Kokubo, Koichiro Tanaka, Akihisa Shimomura, Tatsuya Arao, Hidekazu Miyairi, Mai Akiba
  • Patent number: 7737506
    Abstract: An objective is to provide a method of manufacturing a semiconductor device, and a semiconductor device manufactured by using the manufacturing method, in which a laser crystallization method is used that is capable of preventing the formation of grain boundaries in TFT channel formation regions, and is capable of preventing conspicuous drops in TFT mobility, reduction in the ON current, and increases in the OFF current, all due to grain boundaries. Depressions and projections with stripe shape or rectangular shape are formed. Continuous wave laser light is then irradiated to a semiconductor film formed on an insulating film along the depressions and projections with stripe shape of the insulating film, or along a longitudinal axis direction or a transverse axis direction of the rectangular shape. Note that although it is most preferable to use continuous wave laser light at this point, pulse wave laser light may also be used.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: June 15, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Shunpei Yamazaki, Chiho Kokubo, Koichiro Tanaka, Akihisa Shimomura, Tatsuya Arao, Hidekazu Miyairi, Mai Akiba
  • Publication number: 20100144070
    Abstract: It is an object of the present invention to provide a highly sophisticated functional IC card that can ensure security by preventing forgery such as changing a picture of a face, and display other images as well as the picture of a face. An IC card comprising a display device and a plurality of thin film integrated circuits; wherein driving of the display device is controlled by the plurality of thin film integrated circuits; a semiconductor element used for the plurality of thin film integrated circuits and the display device is formed by using a polycrystalline semiconductor film; the plurality of thin film integrated circuits are laminated; the display device and the plurality of thin film integrated circuits are equipped for the same printed wiring board; and the IC card has a thickness of from 0.05 mm to 1 mm.
    Type: Application
    Filed: January 6, 2010
    Publication date: June 10, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Toru TAKAYAMA, Junya MARUYAMA, Yuugo GOTO, Yumiko OHNO, Mai AKIBA
  • Patent number: 7728734
    Abstract: In commercial products to which a non-contact type or contact type ID label or ID tag is attached and ID cards, there is fear that, due to a difference between coefficients of thermal expansion between an antenna for communication and a resin provided around the antenna, stress is applied to the resin with the larger coefficient of thermal expansion to break the resin. This contributes to a decrease in manufacturing yield, lifetime, and reliability of an ID label or the like. In an article such as an ID label, an ID tag, and an ID card according to the present invention, a filler is included in a filling layer provided around an antenna forming an ID label, an ID tag, and an ID card so that the difference in coefficient of thermal expansion between the antenna and the filling layer can be reduced. This makes it possible to ease generation of stress due to the difference in coefficient of thermal expansion and prevent peeling and cracks of the filling layer.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: June 1, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd
    Inventors: Yasuyuki Arai, Mai Akiba, Yuko Tachimura, Yohei Kanno
  • Patent number: 7670935
    Abstract: Island-like semiconductor films and markers are formed prior to laser irradiation. Markers are used as positional references so as not to perform laser irradiation all over the semiconductor within a substrate surface, but to perform a minimum crystallization on at least indispensable portion. Since the time required for laser crystallization can be reduced, it is possible to increase the substrate processing speed. By applying the above-described constitution to a conventional SLS method, a means for solving such problem in the conventional SLS method that the substrate processing efficiency is insufficient, is provided.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: March 2, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akihisa Shimomura, Hisashi Ohtani, Masaaki Hiroki, Koichiro Tanaka, Aiko Shiga, Mai Akiba, Kenji Kasahara
  • Patent number: 7667454
    Abstract: The present invention provides an inspection system of ID chips that can supply a signal or power supply voltage to an ID chip without contact, and can increase throughput of an inspection process and an inspection method using the inspection system. The inspection system according to the present invention includes a plurality of inspection electrodes, a plurality of inspection antennas, a position control unit, a unit for applying voltage to each of the inspection antennas, and a unit for measuring potentials of the inspection electrodes. One feature of the inspection system is that a plurality of ID chips and the plurality of inspection electrodes are overlapped with a certain space therebetween, and the plurality of ID chips and the plurality of inspection antennas are overlapped with a certain space therebetween, and the plurality of ID chips are interposed between the plurality of inspection electrodes and the plurality of inspection antennas by the position control unit.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: February 23, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuyuki Arai, Yuko Tachimura, Mai Akiba
  • Publication number: 20100029068
    Abstract: A semiconductor device production system using a laser crystallization method is provided which can avoid forming grain boundaries in a channel formation region of a TFT, thereby preventing grain boundaries from lowering the mobility of the TFT greatly, from lowering ON current, and from increasing OFF current. Rectangular or stripe pattern depression and projection portions are formed on an insulating film. A semiconductor film is formed on the insulating film. The semiconductor film is irradiated with continuous wave laser light by running the laser light along the stripe pattern depression and projection portions of the insulating film or along the major or minor axis direction of the rectangle. Although continuous wave laser light is most preferred among laser light, it is also possible to use pulse oscillation laser light in irradiating the semiconductor film.
    Type: Application
    Filed: July 31, 2009
    Publication date: February 4, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Atsuo ISOBE, Shunpei YAMAZAKI, Koji DAIRIKI, Hiroshi SHIBATA, Chiho KOKUBO, Tatsuya ARAO, Masahiko HAYAKAWA, Hidekazu MIYAIRI, Akihisa SHIMOMURA, Koichiro TANAKA, Mai AKIBA
  • Patent number: 7652286
    Abstract: An insulating film having depressions and projections are formed on a substrate. A semiconductor film is formed on the insulating film. Thus, for crystallization by using laser light, a part where stress concentrates is selectively formed in the semiconductor film. More specifically, stripe or rectangular depressions and projections are provided in the semiconductor film. Then, continuous-wave laser light is irradiated along the stripe depressions and projections formed in the semiconductor film or in a direction of a major axis or minor axis of the rectangle.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: January 26, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Koji Dairiki, Hiroshi Shibata, Chiho Kokubo, Tatsuya Arao, Masahiko Hayakawa, Hidekazu Miyairi, Akihisa Shimomura, Koichiro Tanaka, Shunpei Yamazaki, Mai Akiba
  • Patent number: 7652359
    Abstract: It is an object of the present invention to provide a highly sophisticated functional IC card that can ensure security by preventing forgery such as changing a picture of a face, and display other images as well as the picture of a face. An IC card comprising a display device and a plurality of thin film integrated circuits; wherein driving of the display device is controlled by the plurality of thin film integrated circuits; a semiconductor element used for the plurality of thin film integrated circuits and the display device is formed by using a polycrystalline semiconductor film; the plurality of thin film integrated circuits are laminated; the display device and the plurality of thin film integrated circuits are equipped for the same printed wiring board; and the IC card has a thickness of from 0.05 mm to 1 mm.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: January 26, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toru Takayama, Junya Maruyama, Yuugo Goto, Yumiko Ohno, Mai Akiba
  • Patent number: 7633145
    Abstract: The invention provides a semiconductor device which can reliably restrict transmission/reception of signals or a power source voltage between a reader/writer when peeled off after stuck to an object. The semiconductor device of the invention includes an integrated circuit and an antenna formed on a support base. In the semiconductor device of the invention, a separating layer which is overlapped with the integrated circuit and the antenna sandwiching an insulating film is formed on the support base. A wiring for electrically connecting the integrated circuit and the antenna, a wiring for electrically connecting semiconductor elements in an integrated circuit, or a wiring which forms the antenna passes through the separating layer.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: December 15, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuyuki Arai, Mai Akiba, Yuko Tachimura, Yohei Kanno
  • Patent number: 7589032
    Abstract: Continuous wave laser apparatus with enhanced processing efficiency is provided as well as a method of manufacturing a semiconductor device using the laser apparatus. The laser apparatus has: a laser oscillator; a unit for rotating a process object; a unit for moving the center of the rotation along a straight line; and an optical system for processing laser light that is outputted from the laser oscillator to irradiate with the laser light a certain region within the moving range of the process object. The laser apparatus is characterized in that the certain region is on a line extended from the straight line and that the position at which the certain region overlaps the process object is moved by rotating the process object while moving the center of the rotation along the straight line.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: September 15, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Koichiro Tanaka, Hidekazu Miyairi, Aiko Shiga, Akihisa Shimomura, Mai Akiba
  • Publication number: 20090224922
    Abstract: A packing material, a tag, a certificate, paper money, and securities, each of which can be surely prevented from counterfeit or deception, are disclosed. According to the present invention, a plurality of wireless tags is used for an object such as a packing material, a tag, a certificate, paper money, or securities. The location of the plurality of wireless tags attached to each of the object is varied on the object basis such that the object can be identified. Then, the object using the wireless tag is identified by detecting the location of the plurality of wireless tags attached to each of the object. The more random the locations of the wireless tags, the more certain it becomes to identify the object and to prevent or detect the counterfeit and the deception of the object.
    Type: Application
    Filed: March 23, 2009
    Publication date: September 10, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Mai AKIBA
  • Patent number: 7582162
    Abstract: A semiconductor device production system using a laser crystallization method is provided which can avoid forming grain boundaries in a channel formation region of a TFT, thereby preventing grain boundaries from lowering the mobility of the TFT greatly, from lowering ON current, and from increasing OFF current. Rectangular or stripe pattern depression and projection portions are formed on an insulating film. A semiconductor film is formed on the insulating film. The semiconductor film is irradiated with continuous wave laser light by running the laser light along the stripe pattern depression and projection portions of the insulating film or along the major or minor axis direction of the rectangle. Although continuous wave laser light is most preferred among laser light, it is also possible to use pulse oscillation laser light in irradiating the semiconductor film.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: September 1, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Shunpei Yamazaki, Koji Dairiki, Hiroshi Shibata, Chiho Kokubo, Tatsuya Arao, Masahiko Hayakawa, Hidekazu Miyairi, Akihisa Shimomura, Koichiro Tanaka, Mai Akiba
  • Patent number: 7560397
    Abstract: A method of manufacturing a semiconductor device is provided which uses a laser crystallization method capable of increasing substrate processing efficiency. An island-like semiconductor film including one or more islands is formed by patterning (sub-island). The sub-island is then irradiated with laser light to improve its crystallinity, and thereafter patterned to form an island. From pattern information of a sub-island, a laser light scanning path on a substrate is determined such that at least the sub-island is irradiated with laser light. In other words, the present invention runs laser light so as to obtain at least the minimum degree of crystallization of a portion that has to be crystallized, instead of irradiating the entire substrate with laser light.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: July 14, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hiroshi Shibata, Koichiro Tanaka, Masaaki Hiroki, Mai Akiba
  • Patent number: 7561052
    Abstract: In commercial products to which a non-contact type or contact type ID label or ID tag is attached and ID cards, there is fear that, due to a difference between coefficients of thermal expansion between an antenna for communication and a resin provided around the antenna, stress is applied to the resin with the larger coefficient of thermal expansion to break the resin. This contributes to decrease in manufacturing yield, lifetime, and reliability of an ID label or the like. In an article such as an ID label, an ID tag, and an ID card according to the present invention, a filler is included in a filling layer provided around an antenna forming an ID label, an ID tag, and an ID card so that the difference in coefficient of thermal expansion between the antenna and the filling layer can be reduced. This makes it possible to ease generation of stress due to the difference in coefficient of thermal expansion and prevent peeling and cracks of the filling layer.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: July 14, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuyuki Arai, Mai Akiba, Yuko Tachimura, Yohei Kanno