Patents by Inventor Makoto Miyoshi

Makoto Miyoshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8471265
    Abstract: Provided is a crack-free epitaxial substrate having a small amount of warping, in which a silicon substrate is used as a base substrate. The epitaxial substrate includes a (111) single crystal Si substrate, a buffer layer, and a crystal layer. The buffer layer is formed of a first lamination unit and a second lamination unit being alternately laminated. The first lamination unit includes a composition modulation layer and a first intermediate layer. The composition modulation layer is formed of a first unit layer and a second unit layer having different compositions being alternately and repeatedly laminated so that a compressive strain exists therein. The first intermediate layer enhances the compressive strain existing in the composition modulation layer. The second lamination unit is a second intermediate layer that is substantially strain-free.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: June 25, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Shigeaki Sumiya, Mikiya Ichimura, Sota Maehara, Mitsuhiro Tanaka
  • Patent number: 8415690
    Abstract: Provided is an epitaxial substrate using a silicon substrate as a base substrate. An epitaxial substrate, in which a group of group-III nitride layers are formed on a (111) single crystal Si substrate such that a (0001) crystal plane of the group of group-III nitride layers is substantially in parallel with a surface of the substrate, includes: a first group-III nitride layer made of AlN with many defects configured of at least one kind from a columnar or granular crystal or domain; a second group-III nitride layer whose interface with the first group-III nitride layer is shaped into a three-dimensional concave-convex surface; and a third group-III nitride layer epitaxially formed on the second group-III nitride layer as a graded composition layer in which the proportion of existence of Al is smaller in a portion closer to a fourth group-III nitride.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: April 9, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Shigeaki Sumiya, Mikiya Ichimura, Mitsuhiro Tanaka
  • Patent number: 8410552
    Abstract: Provided is an epitaxial substrate capable of achieving a semiconductor device that has excellent schottky contact characteristics as well as satisfactory device characteristics. On a base substrate, a channel layer formed of a first group III nitride that contains at least Al and Ga and has a composition of Inx1Aly1Gaz1N (x1+y1+z1=1) is formed. On the channel layer, a barrier layer formed of a second group III nitride that contains at least In and Al and has a composition of Inx2Aly2Gaz2N (x2+y2+z2=1) is formed such that an In composition ratio of a near-surface portion is smaller than an In composition ratio of a portion other than the near-surface portion.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: April 2, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Yoshitaka Kuraoka, Shigeaki Sumiya, Mikiya Ichimura, Tomohiko Sugiyama, Mitsuhiro Tanaka
  • Patent number: 8404045
    Abstract: An underlying film 2 of a group III nitride is formed on a substrate 1 by vapor phase deposition. The substrate 1 and the underlying film 2 are subjected to heat treatment in the present of hydrogen to remove the underlying film 2 so that the surface of the substrate 1 is roughened. A seed crystal film 4 of a group III nitride single crystal is formed on a surface of a substrate 1A by vapor phase deposition. A group III nitride single crystal 5 is grown on the seed crystal film 4 by flux method.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: March 26, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Yoshitaka Kuraoka, Shigeaki Sumiya, Makoto Miyoshi, Minoru Imaeda
  • Patent number: 8378386
    Abstract: Provided is an epitaxial substrate capable of achieving a semiconductor device that has excellent ohmic contact characteristics as well as satisfactory device characteristics. On a base substrate, a channel layer formed of a first group III nitride that contains at least Al and Ga and has a composition of Inx1Aly1Gaz1N (x1+y1+z1=1) is formed. On the channel layer, a barrier layer formed of a second group III nitride that contains at least In and Al and has a composition of Inx2Aly2Gaz2N (x2+y2+z2=1) is formed such that an In composition ratio of a near-surface portion is larger than an In composition ratio of a portion other than the near-surface portion.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: February 19, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Yoshitaka Kuraoka, Shigeaki Sumiya, Mikiya Ichimura, Tomohiko Sugiyama, Mitsuhiro Tanaka
  • Publication number: 20130032781
    Abstract: Provided is a crack-free epitaxial substrate with reduced warping, in which a silicon substrate is used as a base substrate. The epitaxial substrate includes a (111) single crystal Si substrate, a superlattice layer group in which a plurality of superlattice layers are laminated, and a crystal layer. The superlattice layer is formed of a first unit layer and a second unit layer made of group-III nitrides having different compositions being alternately and repeatedly laminated. The crystal layer is made of a group-III nitride and formed above the base substrate so as to be positioned at an upper side of the superlattice layer group relative to the base substrate. The superlattice layer group has a compressive strain contained therein. In the superlattice layer group, the more distant the superlattice layer is from the base substrate, the greater the compressive strain becomes.
    Type: Application
    Filed: August 9, 2012
    Publication date: February 7, 2013
    Applicant: NGK Insulators, Ltd.
    Inventors: Makoto MIYOSHI, Shigeaki Sumiya, Mikiya Ichimura, Tomohiko Sugiyama, Mitsuhiro Tanaka
  • Patent number: 8350290
    Abstract: Provided is a light-receiving device which has light-receiving sensitivity superior to that of a conventional Schottky diode type light-receiving device and also has sufficiently-strengthened junction of a Schottky electrode. A first contact layer formed of AlGaN and having conductivity, a light-receiving layer formed of AlGaN, and a second contact layer formed of AlN and having a thickness of 5 nm are epitaxially formed on a predetermined substrate in the stated order, and a second electrode is brought into Schottky junction with the second contact layer, to thereby form MIS junction. Further, after the Schottky junction, heat treatment is performed under a nitrogen gas atmosphere at 600° C. for 30 seconds.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: January 8, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Mitsuhiro Tanaka
  • Publication number: 20120211765
    Abstract: Provided is an epitaxial substrate using a silicon substrate as a base substrate. An epitaxial substrate, in which a group of group-III nitride layers are formed on a (111) single crystal Si substrate such that a (0001) crystal plane of the group of group-III nitride layers is substantially in parallel with a surface of the substrate, includes: a first group-III nitride layer made of AlN with many defects configured of at least one kind from a columnar or granular crystal or domain; a second group-III nitride layer whose interface with the first group-III nitride layer is shaped into a three-dimensional concave-convex surface; and a third group-III nitride layer epitaxially formed on the second group-III nitride layer as a graded composition layer in which the proportion of existence of Al is smaller in a portion closer to a fourth group-III nitride.
    Type: Application
    Filed: April 27, 2012
    Publication date: August 23, 2012
    Applicant: NGK Insulators, Ltd.
    Inventors: Makoto MIYOSHI, Shigeaki Sumiya, Mikiya Ichimura, Mitsuhiro Tanaka
  • Publication number: 20120168771
    Abstract: A semiconductor device is provided such that a reverse leak current is suppressed, and a Schottky junction is reinforced. The semiconductor device includes an epitaxial substrate formed by laminating a group of group-III nitride layers on a base substrate in such a manner that (0001) surfaces of said group-III nitride layers are substantially parallel to a substrate surface, and a Schottky electrode, in which the epitaxial substrate includes a channel layer formed of a first group-III nitride having a composition of Inx1Aly1Gaz1N, a barrier layer formed of a second group-III nitride having a composition of Inx2Aly2N, and a contact layer formed of a third group-III nitride having insularity and adjacent to the barrier layer, and the Schottky electrode is connected to the contact layer. In addition, a heat treatment is performed under a nitrogen atmosphere after the gate electrode has been formed.
    Type: Application
    Filed: March 8, 2012
    Publication date: July 5, 2012
    Inventors: Makoto Miyoshi, Shigeaki Sumiya, Mikiya Ichimura, Tomohiko Sugiyama, Mitsuhiro Tanaka
  • Publication number: 20120161152
    Abstract: Provided is a crack-free epitaxial substrate having a small amount of warping, in which a silicon substrate is used as a base substrate. The epitaxial substrate includes a (111) single crystal Si substrate, a buffer layer, and a crystal layer. The buffer layer is formed of a first lamination unit and a second lamination unit being alternately laminated. The first lamination unit includes a composition modulation layer and a first intermediate layer. The composition modulation layer is formed of a first unit layer and a second unit layer having different compositions being alternately and repeatedly laminated so that a compressive strain exists therein. The first intermediate layer enhances the compressive strain existing in the composition modulation layer. The second lamination unit is a second intermediate layer that is substantially strain-free.
    Type: Application
    Filed: March 7, 2012
    Publication date: June 28, 2012
    Applicant: NGK Insulators, Ltd.
    Inventors: Makoto MIYOSHI, Shigeaki Sumiya, Mikiya Ichimura, Sota Maehara, Mitsuhiro Tanaka
  • Patent number: 8192094
    Abstract: An optical module includes a housing including a groove part formed inside the housing; and a receptacle received in the housing, the receptacle to which an optical connector having an optical fiber is connected, the receptacle including a brim part and a stub part where the brim part is formed in a body. An elastic body is provided in the groove part, the groove part where the brim part is provided. The elastic body is configured to adhere to and hold the stub part.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: June 5, 2012
    Assignee: Fujitsu Limited
    Inventors: Kazuya Sasaki, Makoto Miyoshi, Shinichi Aoki
  • Publication number: 20120126293
    Abstract: An epitaxial substrate, in which a group of group-III nitride layers is formed on a single-crystal silicon substrate so that a crystal plane is approximately parallel to a substrate surface, comprises: a first group-III nitride layer formed of AlN on the base substrate; a second group-III nitride layer formed of InxxAlyyGazzN (xx+yy+zz=1, 0?xx?1, 0<yy?1 and 0<zz?1) on the first group-III nitride layer; and at least one third group-III nitride layer epitaxially-formed on the second group-III nitride layer, wherein: the first group-III nitride layer is a layer containing multiple defects including at least one type of a columnar crystal, a granular crystal, a columnar domain and a granular domain; and an interface between the first group-III nitride layer and the second group-III nitride layer is a three-dimensional asperity surface.
    Type: Application
    Filed: January 19, 2012
    Publication date: May 24, 2012
    Applicant: NGK INSULATORS, LTD.
    Inventors: Shigeaki Sumiya, Makoto Miyoshi, Tomohiko Sugiyama, Mikiya Ichimura, Yoshitaka Kuraoka, Mitsuhiro Tanaka
  • Publication number: 20120113596
    Abstract: An electronic apparatus includes a substrate, a device including a flange, the device being mounted at a first side of the substrate, a plate arranged at a position corresponding to the device at a second side of the substrate, the second side being opposite to the first side, and a securing member that secures the device to the substrate.
    Type: Application
    Filed: September 19, 2011
    Publication date: May 10, 2012
    Applicant: FUJITSU OPTICAL COMPONENTS LIMITED
    Inventors: Makoto MIYOSHI, Tsutomu OHTSU, Akihito KEZUKA
  • Patent number: 8044485
    Abstract: A semiconductor device made of a group-III nitride semiconductor having excellent properties is provided. The semiconductor device has a horizontal diode structure of Schottky type or P-N junction type, or combined type thereof having a main conduction pathway in the horizontal direction in a conductive layer with unit anode portions and unit cathode electrodes being integrated adjacently to each other in the horizontal direction. The conductive layer is preferably formed by depositing a group-III nitride layer and generating a two-dimensional electron gas layer on the interface. Forming the conductive layer of the group-III nitride having high breakdown field allows the breakdown voltage to be kept high while the gap between electrodes is narrow, which achieves a semiconductor device having high output current per chip area.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: October 25, 2011
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Yoshitaka Kuraoka
  • Patent number: 8026718
    Abstract: An aspect of the present invention provides a magnetic sensor which is operated better at a high temperature range not lower than 300° C. compared with a conventional magnetic sensor. A operating layer having a heterojunction interface is formed by laminating a first layer made of GaN whose electron concentration is not more than 1×1016/cm3 at room temperature and a second layer made of AlxGa1-xN (0<x?0.3). Therefore, in a two-dimensional electron gas region, carrier mobility is further enhanced while a carrier concentration is further lowered. Accordingly, there is realized a Hall element which can be used with measurement sensitivity similar to that at room temperature by constant-current drive even at a high temperature, while having the high measurement sensitivity in both the constant-current drive and constant-voltage drive at room temperature.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: September 27, 2011
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Mitsuhiro Tanaka
  • Patent number: 8008689
    Abstract: A normally-off operation type HEMT device excellent in characteristics can be realized. A two-dimensional electron gas region is formed in a periphery of a hetero-junction interface of a base layer and a barrier layer, so that access resistance in an access portion, that is, between a drain and a gate and between a gate and a source is sufficiently lowered, and at the same time, a P-type region is formed immediately under the gate. This realizes a normally-off type HEMT device having a low on-resistance. Further, when a film thickness of an insulating layer is defined as t (nm) and a relative permittivity of a substance forming the insulating layer is defined as k, a threshold voltage as high as +3 V or more can be attained by satisfying k/t?0.85 (nm?1).
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: August 30, 2011
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Mitsuhiro Tanaka
  • Patent number: 7982241
    Abstract: A buffer layer formed of Inx1Aly1Gaz1N formed on a base, with an upper part of the buffer layer containing columnar polycrystalline including a grain boundary existing in a direction substantially perpendicular to a surface of the base. The number of grain boundaries in the lower part of the buffer layer is greater than that in the upper part, and a full width at half maximum of an X-ray rocking curve of the upper part is 300-3000 seconds, RMS of the surface of the buffer layer is 0.2 nm-6 nm, and the ratio of the grain boundary width of the crystal grain of the upper part in a direction parallel to the base surface to the formation thickness of the buffer layer is 0.5-1.5.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: July 19, 2011
    Assignee: NGK Insulators, Ltd.
    Inventors: Yoshitaka Kuraoka, Makoto Miyoshi, Shigeaki Sumiya, Mitsuhiro Tanaka
  • Publication number: 20110062493
    Abstract: Provided is an epitaxial substrate for semiconductor device that is capable of achieving a semiconductor device having high reliability in reverse characteristics of schottky junction. An epitaxial substrate for semiconductor device obtained by forming, on a base substrate, a group of group III nitride layers by lamination such that a (0001) crystal plane of each layer is approximately parallel to a substrate surface includes: a channel layer formed of a first group III nitride having a composition of Inx1Aly1Gaz1N (x1+y1+z1=1, z1>0); and a barrier layer formed of a second group III nitride having a composition of Inx2Aly2N (x2+y2=1, x2>0, y2>0), wherein the second group III nitride is a short-range-ordered mixed crystal having a short-range order parameter ? satisfying a range where 0???1.
    Type: Application
    Filed: August 10, 2010
    Publication date: March 17, 2011
    Applicant: NGK Insulators, Ltd.
    Inventors: Makoto MIYOSHI, Yoshitaka KURAOKA, Shigeaki SUMIYA, Mikiya ICHIMURA, Tomohiko SUGIYAMA, Mitsuhiro TANAKA
  • Publication number: 20110049570
    Abstract: Provided is an epitaxial substrate capable of achieving a semiconductor device that has excellent ohmic contact characteristics as well as satisfactory device characteristics. On a base substrate, a channel layer formed of a first group III nitride that contains at least Al and Ga and has a composition of Inx1Aly1Gaz1N (x1+y1+z1=1) is formed. On the channel layer, a barrier layer formed of a second group III nitride that contains at least In and Al and has a composition of Inx2Aly2Gaz2N (x2+y2+z2=1) is formed such that an In composition ratio of a near-surface portion is larger than an In composition ratio of a portion other than the near-surface portion.
    Type: Application
    Filed: August 10, 2010
    Publication date: March 3, 2011
    Applicant: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Yoshitaka Kuraoka, Shigeaki Sumiya, Mikiya Ichimura, Tomohiko Sugiyama, Mitsuhiro Tanaka
  • Publication number: 20110049571
    Abstract: Provided is an epitaxial substrate capable of achieving a semiconductor device that has excellent schottky contact characteristics as well as satisfactory device characteristics. On a base substrate, a channel layer formed of a first group III nitride that contains at least Al and Ga and has a composition of Inx1Aly1Gaz1N (x1+y1+z1=1) is formed. On the channel layer, a barrier layer formed of a second group III nitride that contains at least In and Al and has a composition of Inx2Aly2Gaz2N (x2+y2+z2=1) is formed such that an In composition ratio of a near-surface portion is smaller than an In composition ratio of a portion other than the near-surface portion.
    Type: Application
    Filed: August 13, 2010
    Publication date: March 3, 2011
    Applicant: NGK Insulators, Ltd.
    Inventors: Makoto MIYOSHI, Yoshitaka Kuraoka, Shigeaki Sumiya, Mikiya Ichimura, Tomohiko Sugiyama, Mitsuhiro Tanaka