Patents by Inventor Marc Anderson

Marc Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190380853
    Abstract: A delivery system includes an elongated shaft component, a self-expanding valve prosthesis, at least one cinching suture, and a radially-expandable sleeve. The valve prosthesis is disposed over a distal portion of the elongated shaft component and includes a compressed configuration for delivery and an expanded configuration for deployment. The at least one cinching suture removably couples the valve prosthesis to the elongated shaft component and radially compresses the valve prosthesis into the compressed configuration for delivery. The sleeve is secured to and encircles an outer surface of the valve prosthesis. The sleeve has a delivery state with a first diameter extending over a full length of the valve prosthesis in the compressed configuration and a deployed state with a greater second diameter extending over the full length of the valve prosthesis in the expanded configuration. The sleeve is configured to prevent paravalvular leakage in situ in the deployed state.
    Type: Application
    Filed: August 28, 2019
    Publication date: December 19, 2019
    Inventors: Marc Anderson, Laura Ruddy, Grainne Carroll
  • Patent number: 10499895
    Abstract: An introducer sheath system including an outer layer, an inner layer, and a dilator is disclosed. The outer layer is circumferentially extending between a first longitudinal edge and a second longitudinal edge. An expandable gap is defined between the first and second longitudinal edges. The inner layer is disposed within the outer layer. The inner layer is configured to be continuously circumferentially expandable. The inner layer includes a non-extended state having a circumferential portion extending circumferentially inside the outer layer and a fold portion extending into an interior cavity of the inner layer. The inner layer includes an extended state wherein the fold portion extends at least partially circumferentially between the first and second longitudinal edges. The dilator is extendable longitudinally within the inner layer. The dilator includes a recess configured to accommodate the fold portion of the inner layer.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: December 10, 2019
    Assignee: Medtronic Vascular, Inc.
    Inventor: Marc Anderson
  • Patent number: 10493248
    Abstract: Embodiments hereof relate to methods of delivering a valve prosthesis to an annulus of a native valve of a heart, the native valve having chordae tendineae. A chordae management catheter is positioned within a ventricle of the heart, the chordae management catheter having a displacement component at a distal end thereof. The displacement component has an annular shape and defines a central lumen therethrough. The displacement component is radially expanded to push chordae tendineae within the ventricle radially outward. A valve delivery system is introduced into the ventricle of the heart via a ventricular wall of the heart. The valve delivery system has the valve prosthesis at a distal portion thereof. The valve delivery system is advanced through the central lumen of the radially expanded displacement component towards the annulus of the native valve of the heart. The valve prosthesis is deployed into apposition with the annulus of the native valve.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: December 3, 2019
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Paul Devereux, Paraic Frisby, Frank White, Tomas Kitt, Marc Anderson, Grainne Carroll, Ciaran McGuinness, Tim Jones
  • Patent number: 10478297
    Abstract: Embodiments hereof relate to a delivery system for a transcatheter valve prosthesis, the delivery system having an integral centering mechanism to circumferentially center both the delivery system and the valve prosthesis within a vessel at the target implantation site. The centering mechanism may include expandable wings that may be selectively aligned with openings formed through a sidewall of an outer shaft of the delivery system, a coiled wing that may be selectively exposed through an opening formed through a sidewall of an outer shaft of the delivery system, a plurality of elongated filaments extending through a plurality of lumens of an outermost shaft of the delivery system that may be selectively deployed or expanded, an outer shaft that includes at least one pre-formed deflection segment formed thereon, a tool having a deployable lever arm, and/or a plurality of loops deployable via simultaneous longitudinal and rotational movement.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: November 19, 2019
    Assignee: Medtronic Vascular, Inc.
    Inventors: Sarah Ahlberg, Marc Anderson, Donna Barrett, Evelyn Birmingham, Constantin Ciobanu, Kieran Cunningham, Paul Devereux, Niall Duffy, John Gallagher, Patrick Griffin, Frank Harewood, Gerry McCaffrey, Deirdre McGowan Smyth, Bernard Mulvihill, Herinaina Rabarimanantsoa Jamous, Frank White
  • Patent number: 10449044
    Abstract: Transcatheter heart valve delivery systems having a tip assembly configured to close the hole or perforation made in a patient's septal wall after transseptal delivery of a stented prosthetic heart valve to a defective heart valve (e.g., a mitral valve). The delivery device is configured to permit in vivo release of the tip assembly immediately after deployment of the stented prosthetic heart valve to implant the tip assembly into the septal wall proximate the hole through which the stented prosthetic heart valve is delivered. Methods of treating the defective heart valve, including closing the hole made during transseptal delivery of the stented prosthetic heart valve with the tip assembly of the delivery device are also disclosed.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: October 22, 2019
    Assignee: Medtronic Vascular, Inc.
    Inventor: Marc Anderson
  • Publication number: 20190307558
    Abstract: Embodiments hereof relate methods of delivering a valve prosthesis to an annulus of a native valve of a heart. A valve delivery system is introduced into a ventricle of the heart via a ventricular wall of the heart. The valve delivery system has a displacement component at the distal portion thereof. The valve prosthesis is in a delivery configuration and the displacement component is in a delivery state in which the displacement component has a first outer diameter. While the valve prosthesis is in the delivery configuration, the displacement component of the valve delivery system is radially expanded into an expanded state in which the displacement component has a second outer diameter greater than the first outer diameter. The valve delivery system is advanced towards the annulus of the native valve of the heart with the displacement component in the expanded state to displace chordae tendineae.
    Type: Application
    Filed: June 25, 2019
    Publication date: October 10, 2019
    Inventor: Marc ANDERSON
  • Publication number: 20190254816
    Abstract: Methods of transcatheter delivery of a prosthetic heart valve. A distal region of a guide member assembly is advanced into a heart of a patient. The distal region is docked to native anatomy of the heart. A delivery device, including a collapsed prosthetic heart valve, is advanced over the docked guide member assembly. The collapsed prosthetic heart valve is located at an implantation site. The prosthetic heart valve is deployed from the delivery device, and then the delivery device is removed from the patient. At least a portion of the guide member assembly is removed from the patient. In some embodiments, the docking structure is docked to one or more of native mitral valve leaflets, chordae in the left ventricle, or walls of the left ventricle as part of a transseptal mitral valve delivery procedure.
    Type: Application
    Filed: February 22, 2019
    Publication date: August 22, 2019
    Applicant: Medtronic Vascular, Inc.
    Inventors: Marc A. Anderson, Grainne Teresa Carroll, Paul Devereux, Niall Duffy, Matthew Fleming, Alexander J. Hill, Elliot J. Howard, James R. Keogh, Marian Patricia Lally, Luke Lehmann, Jeffrey Madden, Kevin M. Mauch, Ciaran McGuinness, Brian T. McHenry, Karl L. Olney, Geoffrey Orth, Edward Sarnowski, Elizabeth A. Schotzko, Benjamin Wong
  • Patent number: 10357362
    Abstract: Heart valve delivery systems and methods for providing a clinician with feedback during a stented prosthetic heart valve delivery procedure. Feedback is provided using piezochromatic indicators incorporated into elements of the delivery device, such as the handle assembly, shaft assembly and capsule to indicate when detrimental forces, or forces nearing those that are detrimental, are being applied to the delivery device during the prosthetic heart valve loading, delivery or deployment procedure. Other embodiments incorporate a feedback indicator to indicate that a delivery device has previously been used and is not in a new condition.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: July 23, 2019
    Assignee: Medtronic Vascular, Inc.
    Inventors: Marc Anderson, Patrick Griffin, Caroline Hopkins
  • Publication number: 20190170458
    Abstract: The present disclosure is directed to a metal-containing apparatus including a substrate member constructed of a metal that is highly resistant to pitting corrosion and wear in aggressive media. An exemplary metal-containing apparatus is a plate heat exchanger. The metal includes an oxidation layer on the surface thereof and a thin metal oxide nanoporous film on top of the oxidation layer. The nanoporous film is highly compliant and is comprised of oxygen and aluminum, titanium, silicon, zirconium and combinations thereof.
    Type: Application
    Filed: February 5, 2019
    Publication date: June 6, 2019
    Inventors: Marc A. Anderson, M. Isabel Tejedor, Ole Christensen
  • Publication number: 20190101340
    Abstract: The present disclosure is directed to a metal-containing apparatus including a substrate member constructed of a metal that is highly resistant to pitting corrosion and wear in aggressive media. An exemplary metal-containing apparatus is a plate heat exchanger. The metal includes an oxidation layer on the surface thereof and a thin metal oxide nanoporous film on top of the oxidation layer. The nanoporous film is highly compliant and is comprised of oxygen and aluminum, titanium, silicon, zirconium and combinations thereof.
    Type: Application
    Filed: October 31, 2018
    Publication date: April 4, 2019
    Inventors: Marc A. Anderson, M. Isabel Tejedor, Ole Christensen
  • Patent number: 10183104
    Abstract: The invention features modular implantable ventricular assist devices configured to be, at least in part, assembled within a patient. The devices generally include a pump assembly and an expandable frame. The frame is configured to engage tissue of a patient when implanted. The pump assembly is configured to be operably coupled to the frame when the frame is implanted and in the expanded configuration.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: January 22, 2019
    Assignee: Medtronic Vascular Galway
    Inventors: Marc Anderson, Declan Costello, Marian Creaven, Paul Devereux, Niall Duffy, John Gallagher, John Milroy
  • Patent number: 10145629
    Abstract: The present disclosure is directed to a metal-containing apparatus including a substrate member constructed of a metal that is highly resistant to pitting corrosion and wear in aggressive media. An exemplary metal-containing apparatus is a plate heat exchanger. The metal includes an oxidation layer on the surface thereof and a thin metal oxide nanoporous film on top of the oxidation layer. The nanoporous film is highly compliant and is comprised of oxygen and aluminum, titanium, silicon, zirconium and combinations thereof.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: December 4, 2018
    Assignee: Wisconson Alumni Research Foundation
    Inventors: Marc A. Anderson, M. Isabel Tejedor, Ole Christensen
  • Publication number: 20180318076
    Abstract: A valve delivery system and valve delivery method are disclosed. The valve delivery system includes an inner shaft extending along a longitudinal axis and an elongated tension member to continuously circumferentially coil around a prosthetic valve disposed on the inner shaft to form a sheath portion to releasably contain the prosthetic valve on the inner shaft in a compressed state, the elongated tension member extending from the sheath portion along the longitudinal axis of the inner shaft.
    Type: Application
    Filed: May 8, 2017
    Publication date: November 8, 2018
    Inventors: Marc Anderson, Niall Crosbie, James R. Keogh
  • Publication number: 20180303610
    Abstract: An introducer sheath system including an outer layer, an inner layer, and a dilator is disclosed. The outer layer is circumferentially extending between a first longitudinal edge and a second longitudinal edge. An expandable gap is defined between the first and second longitudinal edges. The inner layer is disposed within the outer layer. The inner layer is configured to be continuously circumferentially expandable. The inner layer includes a non-extended state having a circumferential portion extending circumferentially inside the outer layer and a fold portion extending into an interior cavity of the inner layer. The inner layer includes an extended state wherein the fold portion extends at least partially circumferentially between the first and second longitudinal edges. The dilator is extendable longitudinally within the inner layer. The dilator includes a recess configured to accommodate the fold portion of the inner layer.
    Type: Application
    Filed: April 24, 2017
    Publication date: October 25, 2018
    Inventor: Marc Anderson
  • Publication number: 20180309719
    Abstract: Systems and methods for creating a new domain, such as a top-level domain or a second-level domain, make use of a Domain Manager that enables a user to enter data that is necessary or optional to implement the creation of a new domain. Systems such as, for example, a Registry and one or more Registrars, may use the data defined by the Domain Manager to create a new domain.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 25, 2018
    Inventors: James Gould, Paul Tidwell, Ramana M. Lavu, Marc Anderson, Lambert Arians
  • Publication number: 20180229000
    Abstract: An elastic percutaneous elastic introducer sheath is disclosed which can locally expand and reduce to accommodate a transcatheter medical device. The elastic introducer sheath includes a non-circumferentially continuous elastic frame, a liner, and a jacket.
    Type: Application
    Filed: April 13, 2018
    Publication date: August 16, 2018
    Inventors: Marc A. ANDERSON, Donna BARRETT, Evelyn BIRMINGHAM, Constantin CIOBANU, Kate CORISH, Niall DUFFY, Gavin KENNY, Patrick E. MACAULAY, Luke MCCARTNEY, Deirdre Bridget MCGOWAN SMYTH, Bernard Patrick MULVIHILL, Stephen J. PETER
  • Publication number: 20180207011
    Abstract: A delivery system includes an elongated shaft component, a self-expanding valve prosthesis, at least one cinching suture, and a radially-expandable sleeve. The valve prosthesis is disposed over a distal portion of the elongated shaft component and includes a compressed configuration for delivery and an expanded configuration for deployment. The at least one cinching suture removably couples the valve prosthesis to the elongated shaft component and radially compresses the valve prosthesis into the compressed configuration for delivery. The sleeve is secured to and encircles an outer surface of the valve prosthesis. The sleeve has a delivery state with a first diameter extending over a full length of the valve prosthesis in the compressed configuration and a deployed state with a greater second diameter extending over the full length of the valve prosthesis in the expanded configuration. The sleeve is configured to prevent paravalvular leakage in situ in the deployed state.
    Type: Application
    Filed: January 20, 2017
    Publication date: July 26, 2018
    Inventors: Paul Rothstein, Marc Anderson, Laura Ruddy, Grainne Carroll
  • Publication number: 20180200058
    Abstract: A heart valve therapy system including a delivery device and a stented valve. The delivery device includes an outer sheath, an inner shaft, an optional hub assembly, and a plurality of tethers. In a delivery state, a stent frame of the prosthesis is crimped over the inner shaft and maintained in a compressed condition by the outer sheath. The tethers are connected to the stent frame. In a partial deployment state, the outer sheath is at least partially withdrawn, allowing the stent frame to self-expand. Tension in the tethers prevents the stent frame from rapidly expanding and optionally allowing recapture. Upon completion of the stent frame expansion, the tethers are withdrawn.
    Type: Application
    Filed: March 16, 2018
    Publication date: July 19, 2018
    Inventors: Marian Creaven, Marc Anderson, Kate Corish, Declan Costello, Niall Duffy, Joshua Dwork, John Gallagher, Patrick Griffin, Gavin Kenny, Deirdre McGowan Smyth, John Milroy, Jason Quill, Herinaina Rabarimanantsoa Jamous, Paul Rothstein, Jeffrey Sandstrom, Edmond Sheahan, Frank White
  • Patent number: 10015134
    Abstract: Systems and methods for creating a new domain, such as a top-level domain or a second-level domain, make use of a Domain Manager that enables a user to enter data that is necessary or optional to implement the creation of a new domain. Systems such as, for example, a Registry and one or more Registrars, may use the data defined by the Domain Manager to create a new domain.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: July 3, 2018
    Assignee: VERISIGN, INC.
    Inventors: James Gould, Paul Tidwell, Ramana Murthy Lavu, Marc Anderson, Lambert Arians
  • Publication number: 20180153695
    Abstract: A delivery device for implanting a prosthetic heart valve. The device includes an inner shaft assembly, an outer sheath and a connector assembly. The inner shaft assembly defines a guide wire lumen. The outer sheath is slidably received over the inner shaft assembly, and forms an exit port proximate a distal end thereof. The connector assembly establishes a guide wire passageway between the guide wire lumen and the exit port. The connector assembly is configured to permit sliding movement of the outer sheath relative to the inner shaft assembly when deploying the prosthetic heart valve. The connector assembly can include first and second tubes that are slidable relative to one another in facilitating movement of the outer sheath relative to the inner shaft assembly.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 7, 2018
    Inventors: Kieran Cunningham, Marc Anderson, Declan Costello, Patrick Griffin