Patents by Inventor Marc X. Olivier

Marc X. Olivier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230251081
    Abstract: A compact displacement sensor comprises a light intensity pattern object, a micro-lens array and an imaging device including a light-intensity measuring surface. The micro-lens array is disposed between the light intensity pattern object and the imaging device such that each micro-lens focuses a corresponding sub-image making up a portion of the light-intensity pattern on the light-intensity measuring surface to create thereupon an image of the object comprising an array of focused sub-images. The displacement sensor can provide high resolution measurements of displacement of the light intensity pattern object from a reference position by registering subsequent images captured after a change in relative position between light intensity pattern object and the imaging device to a reference image based on pattern portions in the focused sub-images.
    Type: Application
    Filed: February 10, 2022
    Publication date: August 10, 2023
    Applicant: SARCOS CORP.
    Inventors: Richard Kirby, Fraser M. Smith, Marc X. Olivier
  • Patent number: 11717956
    Abstract: A robotic joint system with integrated safety can include a first support member, a second support member, and a tunable actuator joint assembly including a joint having an axis of rotation about which the first support member and the second support member rotate. The tunable actuator joint assembly can include a primary actuator and a quasi-passive linear pneumatic actuator coupled between the first and second support members. The quasi-passive linear pneumatic actuator can comprise an active state in which the quasi-passive linear pneumatic actuator stores energy upon a first rotation of the first and second support members and releases energy upon a second rotation of the first and second support members opposite the first rotation, and an inactive state that facilitates return of the first and second support members to a default position.
    Type: Grant
    Filed: August 29, 2022
    Date of Patent: August 8, 2023
    Assignee: Sarcos Corp.
    Inventors: Fraser M. Smith, Marc X. Olivier, Michael J. Myers, Chris Hirschi
  • Patent number: 11697497
    Abstract: A system for aerial neutralization of a detected target aerial vehicle comprises a plurality of counter-attack unmanned aerial vehicles (UAVs), and an aerial vehicle capture countermeasure coupling together the plurality of counter-attack UAVs, to intercept and capture a detected target aerial vehicle in a coordinated manner. The system comprises an aerial vehicle detection system comprising at least one detection sensor operable to detect the target aerial vehicle, and operable to provide command data to at least one counter-attack UAV for tracking and neutralizing the target aerial vehicle. The counter-attack UAVs and a net can be deployed from a movable base station, and the net can be carried in a low-drag configuration until the counter-attack UAVs operate to deploy or open the net. The counter-attack UAVs and systems may be autonomously operated. Associated systems and methods are provided.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: July 11, 2023
    Assignee: Sarcos Corp.
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20230192292
    Abstract: A system for neutralization of a target aerial vehicle comprises a plurality of counter-attack unmanned aerial vehicles (UAVs) and an aerial vehicle detection system comprising at least one detection sensor operable to detect the target aerial vehicle in flight. The system also comprises an aerial vehicle capture countermeasure in the form of a net tethering the plurality of counter-attack UAVs to one another. The counter-attack UAV(s) are operable to capture and neutralize the target aerial vehicle with the net. The system can comprise at least one net storage device associated with a structure and configured to store at least a portion of the net when in a stowed position, and to facilitate deployment of the net when moved to a deployed position via coordinated flight of the plurality of counter-attack UAVs based on the detected target aerial vehicle.
    Type: Application
    Filed: August 29, 2022
    Publication date: June 22, 2023
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Patent number: 11673664
    Abstract: A system for neutralization of a target aerial vehicle comprises a plurality of counter-attack unmanned aerial vehicles (UAVs) and an aerial vehicle detection system comprising at least one detection sensor operable to detect the target aerial vehicle in flight. The system also comprises an aerial vehicle capture countermeasure in the form of a net tethering the plurality of counter-attack UAVs to one another. The counter-attack UAV(s) are operable to capture and neutralize the target aerial vehicle with the net. The system can comprise at least one net storage device associated with a structure and configured to store at least a portion of the net when in a stowed position, and to facilitate deployment of the net when moved to a deployed position via coordinated flight of the plurality of counter-attack UAVs based on the detected target aerial vehicle.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: June 13, 2023
    Assignee: Sarcos Corp.
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20230101090
    Abstract: A robotic assembly comprises a first joint comprising first and second support members rotatably coupled together, and a joint position restoration assembly coupled to at least one of the first or second support members. The joint position restoration assembly can comprise a first spring and a mechanical linkage, wherein the joint position restoration assembly is operable to apply a restoring torque to the first joint. The joint position restoration assembly can be configured to provide a restoring torque versus joint position profile relative to the first joint that corresponds to known mass properties of at least a portion of the robotic assembly acting on or otherwise associated with the first joint, such that, when the first joint is not undergoing powered actuation, the joint position restoration assembly operates to apply, based on the profile, the restoring torque to position and to support the first joint in a stable support position.
    Type: Application
    Filed: September 27, 2021
    Publication date: March 30, 2023
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20230098713
    Abstract: A robotic system comprising an upper robotic assembly and a base platform rotatable relative to one another in at least one degree of freedom via one or more joints. The robotic system further comprises a joint position restoration assembly coupled to at least one of the upper robotic assembly or the base platform, and having a first spring coupled between the upper robotic assembly and the base platform, the joint position restoration assembly being operable to apply a restoring torque to the first joint, wherein the joint position restoration assembly is configured to provide a restoring torque versus joint position profile relative to the first joint that corresponds to mass properties of at least a portion of the robotic assembly associated with the first joint, such that the joint position restoration assembly operates to apply the restoring torque to position and to support the first joint in a stable support position.
    Type: Application
    Filed: September 27, 2021
    Publication date: March 30, 2023
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20220410366
    Abstract: A teleoperated robotic system that includes master control arms, slave arms, and a mobile platform. In use, a user manipulates the master control arms to control movement of the slave arms. The teleoperated robotic system can include two master control arms and two slave arms. The master control arms and the slave arms can be mounted on the platform. The platform can provide support for the master control arms and for a teleoperator, or user, of the robotic system. Thus, a mobile platform can allow the robotic system to be moved from place to place to locate the slave arms in a position for use. Additionally, the user can be positioned on the platform, such that the user can see and hear, directly, the slave arms and the workspace in which the slave arms operate.
    Type: Application
    Filed: August 31, 2022
    Publication date: December 29, 2022
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20220410367
    Abstract: A teleoperated robotic system that includes master control arms, slave arms, and a mobile platform. In use, a user manipulates the master control arms to control movement of the slave arms. The teleoperated robotic system can include two master control arms and two slave arms. The master control arms and the slave arms can be mounted on the platform. The platform can provide support for the master control arms and for a teleoperator, or user, of the robotic system. Thus, a mobile platform can allow the robotic system to be moved from place to place to locate the slave arms in a position for use. Additionally, the user can be positioned on the platform, such that the user can see and hear, directly, the slave arms and the workspace in which the slave arms operate.
    Type: Application
    Filed: August 31, 2022
    Publication date: December 29, 2022
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Patent number: 11472550
    Abstract: A system for detecting and neutralizing a target aerial vehicle comprises a counter-attack unmanned aerial vehicle (UAV) comprising a flight body and a flight control system supported about the flight body operable to facilitate flight of the UAV, and an aerial vehicle countermeasure supported by the flight body. The system can comprise an aerial vehicle detection system comprising at least one detection sensor operable to detect a target aerial vehicle while in-flight, and operable to provide command data to the counter-attack UAV to facilitate interception of the target aerial vehicle by the counter-attack UAV. Upon interception of the target aerial vehicle, the counter-attack UAV is operable to disrupt operation of the detected target aerial vehicle with the aerial vehicle capture countermeasure, thereby neutralizing the target aerial vehicle. The counter-attack UAV and systems may be autonomously operated. Associated systems and methods are provided.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: October 18, 2022
    Assignee: Sarcos Corp.
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Patent number: 11465741
    Abstract: A counter-attack unmanned aerial vehicle (UAV), for aerial neutralization of a detected target aerial vehicle, comprises a flight body and a flight control system to intercept the detected target aerial vehicle, and comprises an aerial vehicle capture countermeasure (e.g., a net) operable to capture the detected target aerial vehicle. The aerial vehicle capture countermeasure can comprise a net deployable from the counter-attack UAV, and a captured target aerial vehicle can be delivered to a particular location. A system for aerial neutralization of a detected target aerial vehicle comprises an aerial vehicle detection system comprising at least one detection sensor operable to detect the target aerial vehicle, and operable to provide command data (including location data) to at least one counter-attack UAV for neutralization of the target aerial vehicle. The counter-attack UAV and systems may be autonomously operated. Associated systems and methods are provided.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: October 11, 2022
    Assignee: Sarcos Corp.
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Patent number: 11440656
    Abstract: A system for neutralizing target aerial vehicles comprises a projectile launching mechanism that launches a projectile that supports a counter-attack unmanned aerial vehicle (UAV) having an aerial vehicle countermeasure. The counter-attack UAV can be folded in the projectile, and operable to unfold when separated from the projectile. The system comprises an aerial vehicle detection system comprising a detection sensor that detects a target aerial vehicle. Upon detection, the projectile launching mechanisms launches the projectile, and the counter-attack UAV is thereafter separated from the projectile to operate in flight to neutralize the detected target aerial vehicle with the aerial vehicle countermeasure. The projectile launching mechanism can comprise a movable platform comprising a plurality of projectiles and counter-attack UAVs, and can comprise a detection sensor to detect target aerial vehicles.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: September 13, 2022
    Assignee: Sarcos Corp.
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20220212345
    Abstract: A robotic system comprising a master robotic system, and a first robotic system comprising a first mobile platform operable to move about a surface, and comprising a first manipulator. The robotic system can comprise a second robotic system comprising a second mobile platform operable to move about the surface, and comprising a second manipulator. A control module can be associated with the master robotic system and the first and second robotic systems, and can be operable in a paired control mode to facilitate paired control of the first and second robotic systems to move about the ground surface, and operable in an unpaired control mode to facilitate non-paired control of a selected one of the first or second robotic systems.
    Type: Application
    Filed: December 31, 2020
    Publication date: July 7, 2022
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20220203545
    Abstract: A robotic device is disclosed that can have a plurality of non-dedicated, smart control devices. Each smart control device can provide smart functionality to control an operational function of the robotic device. In addition, a robotic system is disclosed that can include a robotic device having a local non-dedicated, smart control device providing smart functionality to control an operational function of the robotic device. The robotic device can also include a remote control device to communicate operational information with the local smart control device to facilitate user control of the robotic device.
    Type: Application
    Filed: December 31, 2020
    Publication date: June 30, 2022
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20220204100
    Abstract: A robotic system comprises a first robotic crawler having a mobility mechanism for locomotion, a second robotic crawler having a mobility mechanism for locomotion, and at least one coupling mechanism supported by at least one of the first or second robotic crawlers to couple and uncouple the first and second robotic crawlers to and from each other. When coupled together, the first and second robotic crawlers are operable as a unified robotic crawler system in a coordinated drive mode for operational control of respective mobility mechanisms in a coordinated manner. Various operating modes provide for selective control of various aspects of the first and second robotic crawlers, whether coordinated or independent control. The unified robotic crawler system provides greater or enhanced stability of the first and second robotic crawlers. Associated methods are provided herein.
    Type: Application
    Filed: December 31, 2020
    Publication date: June 30, 2022
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20220176561
    Abstract: An exoskeleton comprising a plurality of support structures, and a plurality of joint mechanisms each joint mechanism rotatably coupling at least two of the plurality of support structures. A sensor suite discrepancy detection system can be operable to interrogate the suite of sensors within the exoskeleton, and can comprise a plurality of sensor groups, each associated with a respective joint mechanism, and each comprising a plurality of sensors from a suite of sensors. A controller can be configured to recruit at least one substitute sensor from a first sensor group of based on an identified discrepancy between the sensor output data of at least two sensors within the first sensor group and a target sensor within the first sensor group, and to execute a remedial measure associated with a safety mode of the exoskeleton for safe operation of the exoskeleton.
    Type: Application
    Filed: December 7, 2020
    Publication date: June 9, 2022
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20220176559
    Abstract: An exoskeleton operable in a safety mode comprises a plurality of support structures, and at least one joint mechanism rotatably coupling two of the plurality of support structures, and a plurality of sensors associated with the at least one joint mechanism.
    Type: Application
    Filed: December 7, 2020
    Publication date: June 9, 2022
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20220176546
    Abstract: An exoskeleton operable to prevent unsafe operation can comprise a plurality of joint mechanisms and a plurality of sensors comprising configured to generate sensor output data associated with at least two joint mechanisms. The exoskeleton can comprise a controller configured to receive the sensor output data; combine the sensor output data; and determine whether the combination of the sensor output data from the first and second sensors satisfies an error condition in relation to at least one defined criterion. The existence of an error condition can be indicative of an anomalous operating state of the exoskeleton, such as a malfunction or an (impending) anomalous kinematic movement. The controller can also combine command signals to be transmitted to two or more joint mechanisms to determine another anomalous operating state to prevent unsafe operation. Associated software and methods are provided.
    Type: Application
    Filed: December 7, 2020
    Publication date: June 9, 2022
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20220176547
    Abstract: An exoskeleton comprising a plurality of support structures, and a plurality of joint mechanisms each joint mechanism rotatably coupling at least two of the plurality of support structures. A sensor suite discrepancy detection system can be operable to interrogate the suite of sensors within the exoskeleton, and can comprise a plurality of sensor groups, each associated with a respective joint mechanism, and each comprising a plurality of sensors from a suite of sensors. A controller can be configured to recruit at least one substitute sensor from a first sensor group of based on an identified discrepancy between the sensor output data of at least two sensors within the first sensor group and a target sensor within the first sensor group, and to execute a remedial measure associated with a safety mode of the exoskeleton for safe operation of the exoskeleton.
    Type: Application
    Filed: December 7, 2020
    Publication date: June 9, 2022
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20220176558
    Abstract: An exoskeleton operable in a safety mode comprises a plurality of support structures, and at least one joint mechanism rotatably coupling two of the plurality of support structures and a plurality of sensors associated with the at least one joint mechanism.
    Type: Application
    Filed: December 7, 2020
    Publication date: June 9, 2022
    Inventors: Fraser M. Smith, Marc X. Olivier