Patents by Inventor Marc X. Olivier

Marc X. Olivier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200108925
    Abstract: A system for neutralizing target aerial vehicles comprises a projectile launching mechanism that launches a projectile that supports a counter-attack unmanned aerial vehicle (UAV) having an aerial vehicle countermeasure. The counter-attack UAV can be folded in the projectile, and operable to unfold when separated from the projectile. The system comprises an aerial vehicle detection system comprising a detection sensor that detects a target aerial vehicle. Upon detection, the projectile launching mechanisms launches the projectile, and the counter-attack UAV is thereafter separated from the projectile to operate in flight to neutralize the detected target aerial vehicle with the aerial vehicle countermeasure. The projectile launching mechanism can comprise a movable platform comprising a plurality of projectiles and counter-attack UAVs, and can comprise a detection sensor to detect target aerial vehicles.
    Type: Application
    Filed: October 3, 2018
    Publication date: April 9, 2020
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20200108924
    Abstract: A system for detecting and neutralizing a target aerial vehicle comprises a counter-attack unmanned aerial vehicle (UAV) comprising a flight body and a flight control system supported about the flight body operable to facilitate flight of the UAV, and an aerial vehicle countermeasure supported by the flight body. The system can comprise an aerial vehicle detection system comprising at least one detection sensor operable to detect a target aerial vehicle while in-flight, and operable to provide command data to the counter-attack UAV to facilitate interception of the target aerial vehicle by the counter-attack UAV. Upon interception of the target aerial vehicle, the counter-attack UAV is operable to disrupt operation of the detected target aerial vehicle with the aerial vehicle capture countermeasure, thereby neutralizing the target aerial vehicle. The counter-attack UAV and systems may be autonomously operated. Associated systems and methods are provided.
    Type: Application
    Filed: October 3, 2018
    Publication date: April 9, 2020
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20200108922
    Abstract: A counter-attack unmanned aerial vehicle (UAV), for aerial neutralization of a detected target aerial vehicle, comprises a flight body and a flight control system to intercept the detected target aerial vehicle, and comprises an aerial vehicle capture countermeasure (e.g., a net) operable to capture the detected target aerial vehicle. The aerial vehicle capture countermeasure can comprise a net deployable from the counter-attack UAV, and a captured target aerial vehicle can be delivered to a particular location. A system for aerial neutralization of a detected target aerial vehicle comprises an aerial vehicle detection system comprising at least one detection sensor operable to detect the target aerial vehicle, and operable to provide command data (including location data) to at least one counter-attack UAV for neutralization of the target aerial vehicle. The counter-attack UAV and systems may be autonomously operated. Associated systems and methods are provided.
    Type: Application
    Filed: October 3, 2018
    Publication date: April 9, 2020
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Patent number: 10533542
    Abstract: A rapidly modulated hydraulic supply is disclosed. The rapidly modulated hydraulic supply can include a chamber for receiving fluid. The rapidly modulated hydraulic supply can also include a displacement member operable to displace the fluid from the chamber. In addition, the rapidly modulated hydraulic supply can include a flow modulation system operable to vary the flow rate of the fluid output from the chamber. A first flow rate corresponds to a first output pressure, and is different from a second flow rate corresponding to a second output pressure for a like movement of the displacement member.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: January 14, 2020
    Assignee: Sarcos LC
    Inventors: Fraser M. Smith, Marc X. Olivier, Shane Olsen
  • Publication number: 20200001450
    Abstract: A legged robotic device is disclosed. The legged robotic device can include a plurality of support members coupled together for relative movement defining a plurality of degrees of freedom, which can correspond to degrees of freedom of a human leg. The legged robotic device can also include actuators to apply forces or torques to the support members in the degrees of freedom. In addition, the legged robotic device can include potential energy storage mechanisms associated with the degrees of freedom operable to store potential energy as a result of relative movement of the support members in the degrees of freedom and to provide at least a portion of the stored potential energy to the support members as compensating forces or torques to assist the actuators. In one aspect, elastic potential energy can be stored. A spring rate and/or a zero position of the potential energy storage mechanisms can be dynamically variable.
    Type: Application
    Filed: September 10, 2019
    Publication date: January 2, 2020
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Patent number: 10406676
    Abstract: A legged robotic device is disclosed. The legged robotic device can include a plurality of support members coupled together for relative movement defining a plurality of degrees of freedom, which can correspond to degrees of freedom of a human leg. The legged robotic device can also include actuators to apply forces or torques to the support members in the degrees of freedom. In addition, the legged robotic device can include potential energy storage mechanisms associated with the degrees of freedom operable to store potential energy as a result of relative movement of the support members in the degrees of freedom and to provide at least a portion of the stored potential energy to the support members as compensating forces or torques to assist the actuators. In one aspect, elastic potential energy can be stored. A spring rate and/or a zero position of the potential energy storage mechanisms can be dynamically variable.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: September 10, 2019
    Assignee: Sarcos LC
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20190184576
    Abstract: A stiffening element to provide variable resistance to movement between a pair of members at a joint, The stiffening element comprises a filler with particles flowable in a bladder. A pressure source is coupled to the bladder to vary a pressure within the bladder and collapse the bladder. Collapsing the bladder varies a flow characteristic of the filler within the bladder, Varying the flow characteristics of the filler varies resistance of the bladder to movement of the bladder, and thus a pair of movable members and the joint.
    Type: Application
    Filed: December 18, 2017
    Publication date: June 20, 2019
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20190176320
    Abstract: A master robotic system for translating a force at a slave robotic system to the master robotic system comprises a plurality of master brake joints rotatably coupling a plurality of robotic links. Each master brake joint corresponds to a respective slave joint of a slave robotic system. Each master brake joint comprises a first braking component (e.g., sheet disk(s)) coupled to a first robotic link and a second braking component (e.g., sheet disk(s)) coupled to a second robotic link, and an actuator operable to act upon the first braking component and the second braking component, to generate a braking force between the first braking component and the second braking component, in response to a control signal corresponding to a sensed force sensed by the slave robotic system. The actuator can comprise a bi-directional actuator, or a cam, piezoelectric, dielectric, or hydraulic actuator, each having minimal power requirements to maximize the braking force of the master brake joint.
    Type: Application
    Filed: December 7, 2017
    Publication date: June 13, 2019
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20180193172
    Abstract: A tunable actuator joint module of a robotic assembly comprises an output member and an input member, where the output member is rotatable about an axis of rotation. A primary actuator (e.g., a motor) is operable to apply a torque to rotate the output member about the axis of rotation. A quasi-passive elastic actuator (e.g., rotary or linear pneumatic actuator) comprising an elastic component is tunable to a joint stiffness value and is operable to selectively release stored energy to apply an augmented torque to assist rotation of the output member and to minimize power consumption of the primary actuator. The tunable actuator joint module comprises a control system having a valve assembly controllably operable to switch the quasi-passive elastic actuator between an elastic state and an inelastic state during respective portions of movement of the robotic assembly (e.g., a hip or knee joint of an exoskeleton). Associated systems and methods are provided.
    Type: Application
    Filed: November 12, 2017
    Publication date: July 12, 2018
    Inventors: Fraser M. Smith, Marc X. Olivier, Glenn Colvin
  • Publication number: 20180194000
    Abstract: A quasi-passive elastic actuator operable within a robotic system comprising a housing comprising an output member operable to couple to a first support member of a robotic system, a first vane device supported by the housing and comprising an input member operable to couple to a second support member of the robotic system, a second vane device coupled to the housing and interfaced with the first vane device, the first vane device and second vane device being rotatable relative to each other within the housing and defining, at least in part, a compression chamber and an expansion chamber. A valve assembly is located and operable at the joint of the robotic system, and is operable to switch the quasi-passive elastic actuator between an elastic state and an inelastic state, the valve assembly comprising a valve device disposed through an opening of the first vane device along an axis of rotation of the first vane device.
    Type: Application
    Filed: November 12, 2017
    Publication date: July 12, 2018
    Inventors: Fraser M. Smith, Marc X. Olivier, Brian J. Maclean, Michael Myers
  • Publication number: 20180193999
    Abstract: A teleoperated robotic system that includes master control arms, slave arms, and a mobile platform. In use, a user manipulates the master control arms to control movement of the slave arms. The teleoperated robotic system can include two master control arms and two slave arms. The master control arms and the slave arms can be mounted on the platform. The platform can provide support for the master control arms and for a teleoperator, or user, of the robotic system. Thus, a mobile platform can allow the robotic system to be moved from place to place to locate the slave arms in a position for use. Additionally, the user can be positioned on the platform, such that the user can see and hear, directly, the slave arms and the workspace in which the slave arms operate.
    Type: Application
    Filed: October 17, 2017
    Publication date: July 12, 2018
    Inventors: Stephen C. Jacobsen, Fraser M. Smith, John McCullough, Glenn Colvin, JR., Wayco Scroggin, Marc X. Olivier
  • Publication number: 20180133906
    Abstract: A clutched joint module of a robotic system comprising an output member operable to couple to a first support member of a robotic system; an input member operable to couple to a second support member of the robotic system; a primary actuator operable to apply a primary torque to the output member to rotate the first and second support members relative to one another about an axis of rotation of the clutched joint module; a quasi-passive elastic actuator coupled to the input member and operable to apply an augmented torque to the output member that combines with the primary torque to rotate the output member about the axis of rotation: and a clutch mechanism operably coupled to the primary actuator and the quasi-passive elastic actuator operable in an engaged state or a disengaged state to actuate and deactivate the quasi-passive elastic actuator and to facilitate application or removal of the augmented torque.
    Type: Application
    Filed: November 12, 2017
    Publication date: May 17, 2018
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Publication number: 20180133905
    Abstract: A clutched joint module comprising an output member and an input member rotatable relative to each other about an axis of rotation; a primary actuator operable to apply a primary torque to rotate the output member about the axis of rotation; and a clutch mechanism operable between an engaged state and a disengaged state to facilitate application of the primary torque. The clutch mechanism can comprise a plurality of plates and an actuator operable to compress the plurality of plates to cause the clutch mechanism to function in the engaged state. The actuator can be a ball-ramp clutch device. A quasi-passive elastic actuator can be coupled to the input member and can be operable, via the clutch mechanism, to release stored energy to apply an augmented torque to assist rotation of the output member. Associated methods and systems are disclosed.
    Type: Application
    Filed: November 12, 2017
    Publication date: May 17, 2018
    Inventors: Fraser M. Smith, Marc X. Olivier
  • Patent number: 9919753
    Abstract: A robotic mobile low-profile transport vehicle is disclosed. The vehicle can comprise a first transport module having a frame assembly, a mobility system, and a propulsion system and a second transport module having a frame assembly and a mobility system. A multi-degree of freedom coupling assemblage can join the first and second transport modules together. The vehicle can include a first platform supported about the frame assembly of the first transport module, and a second platform supported about the frame assembly of the second transport module. Each of the platforms can be configured to receive a load for transport. Additionally, the vehicle can include a control system that can operate to facilitate intra-module communication and coordination to provide a coordinated operating mode of the first and second transport modules and the coupling assemblage about a given terrain.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: March 20, 2018
    Assignee: Sarcos LC
    Inventors: Stephen C. Jacobsen, Marc X. Olivier, John McCullough, Fraser M. Smith
  • Patent number: 9789603
    Abstract: A teleoperated robotic system that includes master control arms, slave arms, and a mobile platform. In use, a user manipulates the master control arms to control movement of the slave arms. The teleoperated robotic system can include two master control arms and two slave arms. The master control arms and the slave arms can be mounted on the platform. The platform can provide support for the master control arms and for a teleoperator, or user, of the robotic system. Thus, a mobile platform can allow the robotic system to be moved from place to place to locate the slave arms in a position for use. Additionally, the user can be positioned on the platform, such that the user can see and hear, directly, the slave arms and the workspace in which the slave arms operate.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: October 17, 2017
    Assignee: Sarcos LC
    Inventors: Stephen C. Jacobsen, Fraser M. Smith, John McCullough, Glenn Colvin, Jr., Wayco Scroggin, Marc X. Olivier
  • Publication number: 20170021881
    Abstract: A robotic mobile low-profile transport vehicle is disclosed. The vehicle can comprise a first transport module having a frame assembly, a mobility system, and a propulsion system and a second transport module having a frame assembly and a mobility system. A multi-degree of freedom coupling assemblage can join the first and second transport modules together. The vehicle can include a first platform supported about the frame assembly of the first transport module, and a second platform supported about the frame assembly of the second transport module. Each of the platforms can be configured to receive a load for transport. Additionally, the vehicle can include a control system that can operate to facilitate intra-module communication and coordination to provide a coordinated operating mode of the first and second transport modules and the coupling assemblage about a given terrain.
    Type: Application
    Filed: March 4, 2016
    Publication date: January 26, 2017
    Inventors: Stephen C. Jacobsen, Marc X. Olivier, John McCullough, Fraser M. Smith
  • Patent number: 9533411
    Abstract: A method for controlling a tele-operated robot agile lift system is disclosed. The method comprises manipulating a human-machine interface of a master robot located on a mobile platform. The human machine interface is kinematically equivalent to a user's arm with a plurality of support members. A position value and a torque value is measured for each support member. The position value and torque value are communicated to support members of a kinematically equivalent slave arm to position the support members to correspond with a position of the human-machine interface.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: January 3, 2017
    Assignee: Sarcos LC
    Inventors: Stephen C. Jacobsen, Fraser M. Smith, Marc X. Olivier, Shane Stilson
  • Publication number: 20160252910
    Abstract: A method and system for gathering information from and setting up a surveillance network within an earth-surface environment that includes inserting one or more mobile robotic devices having a sensing subsystem, a communications subsystem, and a navigation subsystem into an earth-surface environment. The mobile robotic device may be configured into a traveling pose selected from a plurality of available traveling poses, and directed using the navigation subsystem to a sensing location within the earth-surface environment. The environment may be monitored and sensed information collected may be stored or communicated to a remote location. The mobile robotic device may be configured to operate with a vehicle carrier to facilitate insertion and deployment of the robotic vehicle into the earth-surface environment.
    Type: Application
    Filed: January 13, 2015
    Publication date: September 1, 2016
    Inventors: Stephen C. Jacobsen, Marc X. Olivier, Ralph W. Pensel, Fraser M. Smith
  • Patent number: 9403566
    Abstract: A robotic mobile low-profile transport vehicle is disclosed. The vehicle can comprise a first transport module having a frame assembly, a mobility system, and a propulsion system and a second transport module having a frame assembly and a mobility system. A multi-degree of freedom coupling assemblage can join the first and second transport modules together. The vehicle can include a first platform supported about the frame assembly of the first transport module, and a second platform supported about the frame assembly of the second transport module. Each of the platforms can be configured to receive a load for transport. Additionally, the vehicle can include a control system that can operate to facilitate intra-module communication and coordination to provide a coordinated operating mode of the first and second transport modules and the coupling assemblage about a given terrain.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: August 2, 2016
    Assignee: Sarcos LC
    Inventors: Stephen C. Jacobsen, Marc X. Olivier, John McCullough, Fraser M. Smith
  • Patent number: 9314921
    Abstract: An operator controllable robotic device is disclosed. The robotic device comprises a support member, an upper robotic arm, a lower robotic arm, and a control arm. The upper robotic arm is coupled to the support member and has rotational movement in at least one degree of freedom relative to the support member. The lower robotic arm is coupled to the upper robotic arm and has rotational movement in at least one degree of freedom relative to the upper robotic arm. The control arm allows an operator to control the robotic device. The control arm is coupled to the upper robotic arm and has rotational movement in at least one degree of freedom relative to the upper robotic arm. The control arm allows a movement of the operator to control a movement of at least one of the upper robotic arm and the lower robotic arm.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: April 19, 2016
    Assignee: Sarcos LC
    Inventors: Stephen C. Jacobsen, Fraser M. Smith, John McCullough, Marc X. Olivier, Glenn Colvin, Wayco Scroggin