Patents by Inventor Marcos Lopez

Marcos Lopez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7906452
    Abstract: The invention relates to an ink for producing catalyst layers for electrochemical devices. The ink comprises catalyst material, ionomer material, water and at least one organic solvent. The organic solvent belongs to the class of tertiary alcohol's and/or the class of aliphatic diketones and bears functional groups which are stable to oxidative degradation in the ink. This prevents formation of decomposition products in the ink. The ink of the invention displays a high storage stability and is used for producing catalyst-coated substrates for electrochemical devices, in particular fuel cells (PEMFCs, DMFCs).
    Type: Grant
    Filed: March 25, 2006
    Date of Patent: March 15, 2011
    Assignee: Umicore AG & Co. KG
    Inventors: Walter Behl, Marco Lopez
  • Publication number: 20100273085
    Abstract: The present invention describes a method and an apparatus for the electrochemical deposition of fine catalyst particles onto carbon fibre-containing substrates which have a compensating layer (“microlayer”). The method comprises the preparation of a precursor suspension containing ionomer, carbon black and metal ions. This suspension is applied to the substrate and then dried. The deposition of the catalyst particles onto the carbon fibre-containing substrate is effected by a pulsed electrochemical method in an aqueous electrolyte. The noble metal-containing catalyst particles produced by the method have particle sizes in the nanometer range. The catalyst-coated substrates are used for the production of electrodes, gas diffusion electrodes and membrane electrode units for electrochemical devices, such as fuel cells (membrane fuel cells, PEMFC, DMFC, etc.), electrolysers or electrochemical sensors.
    Type: Application
    Filed: February 15, 2008
    Publication date: October 28, 2010
    Applicant: SOLVICORE GMBH & CO. KG
    Inventors: Harald Natter, Vivien Keller, Rolf Hempelmann, Marco Lopez
  • Patent number: 7776781
    Abstract: The invention relates to a carbon-supported PtRu anode catalyst for direct methanol fuel cells (DMFC) which has a platinum/ruthenium content in the range from 80 to 98 wt. %, preferably in the range from 85 to 98 wt. %, particularly preferably in the range from 85 to 95 wt. % (based on the total weight of the catalyst), on a carbon-based electrically conductive support material and has a mean particle size of less than 3 nm. The catalyst is prepared using a carbon black support material having a specific surface area (measured by the BET method) in the range from 1000 to 2000 m2/g by means of a reduction process using chemical reducing agents with addition of organic acids. Electrodes and membrane-electrode units containing the catalyst according to the invention having a high precious metal loading have an electrode layer thickness of less than 80 ?m at a PtRu loading per unit area of the electrode of from 6 to 12 mg of PtRu/cm2 and lead to improved electric power in direct methanol fuel cells.
    Type: Grant
    Filed: August 13, 2005
    Date of Patent: August 17, 2010
    Assignee: Umicore AG & Co. KG
    Inventors: Marco Lopez, Peter Biberbach
  • Publication number: 20100190641
    Abstract: The present invention provides a method for manufacture of supported noble metal based alloy catalysts with a high degree of alloying and a small crystallite size. The method is based on the use of polyol solvents as reaction medium and comprises of a two-step reduction process in the presence of a support material. In the first step, the first metal (M1 =transition metal; e.g. Co, Cr, Ru) is activated by increasing the reaction temperature to 80 to 160° C. In the second step, the second metal (M2=noble metal; e.g. Pt, Pd, Au and mixtures thereof) is added and the slurry is heated to the boiling point of the polyol solvent in a range of 160 to 300° C. Due to this two-step method, an uniform reduction occurs, resulting in noble metal based catalysts with a high degree of alloying and a small crystallite size of less than 3 nm. Due to the high degree of alloying, the lattice constants are lowered.
    Type: Application
    Filed: April 1, 2010
    Publication date: July 29, 2010
    Applicant: UMICORE AG & CO. KG
    Inventors: Dan V. GOIA, Marco LOPEZ, Tapan Kumar SAU, Mihaela-Ortansa Jitianu
  • Patent number: 7713910
    Abstract: The present invention provides a method for manufacture of supported noble metal based alloy catalysts with a high degree of alloying and a small crystallite size. The method is based on the use of polyol solvents as reaction medium and comprises of a two-step reduction process in the presence of a support material. In the first step, the first metal (M1=transition metal; e.g. Co, Cr, Ru) is activated by increasing the reaction temperature to 80 to 160° C. In the second step, the second metal (M2=noble metal; e.g. Pt, Pd, Au and mixtures thereof) is added and the slurry is heated to the boiling point of the polyol solvent in a range of 160 to 300° C. Due to this two-step method, an uniform reduction occurs, resulting in noble metal based catalysts with a high degree of alloying and a small crystallite size of less than 3 nm. Due to the high degree of alloying, the lattice constants are lowered.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: May 11, 2010
    Assignee: Umicore AG & Co KG
    Inventors: Dan V. Goia, Marco Lopez, Tapan Kumar Sau, Mihaela-Ortansa Jitianu
  • Patent number: 7713502
    Abstract: The invention relates to a process for recycling fuel cell components containing fluorine-containing and precious metal-containing constituents: in this process, the fluorine-containing constituents are separated off from the precious metal-containing constituents by treatment with a medium present in the supercritical state. Preference is given to using water as supercritical medium. After the fluorine-containing constituents have been separated off, the precious metal-containing residues can be recovered in a recycling process without harmful fluorine or hydrogen fluoride emissions. The fluorine-containing constituents can likewise be recovered. The process is used in the recovery of precious metals and/or fluorine-containing constituents from membrane fuel cells, electrolysis cells, batteries, sensors and other electrochemical devices.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: May 11, 2010
    Assignee: Umicore AG & Co. KG
    Inventors: Joachim Koehler, Ralf Zuber, Matthias Binder, Volker Baenisch, Marco Lopez
  • Publication number: 20100092841
    Abstract: The invention is directed to core/shell type catalyst particles comprising a Mcore/Mshell structure with Mcore=inner particle core and Mshell=outer particle shell, wherein the medium diameter of the catalyst particle (dcore+shell) is in the range of 20 to 100 nm, 5 preferably in the range of 20 to 50 nm. The thickness of the outer shell (tshell) is about 5 to 20% of the diamet the inner particle core of said catalyst particle, preferably comprising at least 3 atomic layers. The inner particle core (Mcore) of the particles comprises metal or ceramic materials, whereas the material of the outer shell (Mshell) comprises precious metals and/or alloys thereof. The core/shell type catalyst particles are preferably supported on suitable support materials such as carbon black and can be used as electrocatalysts for fuel cells and for other catalytic applications.
    Type: Application
    Filed: August 27, 2007
    Publication date: April 15, 2010
    Applicant: UMICORE AG & CO. KG
    Inventors: Marco Lopez, Michael Lennartz, Dan V. Goia, Carsten Becker, Stephanie Chevalliot
  • Publication number: 20100086832
    Abstract: The invention discloses core/shell type catalyst particles comprising a Mcore/Mshell structure with Mcore=inner particle core and Mshell=outer particle shell, wherein the medium diameter of the catalyst particle (dcore+shell) is in the range of 20 to 100 nm, preferably in the range of 20 to 50 nm. The thickness of the outer shell (tshell) is about 5 to 20% of the diameter of the inner particle core of said catalyst particle, preferably comprising at least 3 atomic layers. The core/shell type catalyst particles, particularly the particles comprising a Pt-based shell, reveal a high specific activity. The catalyst particles are preferably supported on suitable support materials such as carbon black and are used as electrocatalysts for fuel cells.
    Type: Application
    Filed: August 27, 2007
    Publication date: April 8, 2010
    Applicant: UMICORE AG & CO. KG
    Inventors: Marco Lopez, Michael Lennartz, Dan V. Goia, Carsten Becker, Stephanie Chevalliot
  • Publication number: 20090220419
    Abstract: 99mTc-labeled triphenylphosphonium contrasting agents that target the mitochondria and are useful for early detection of breast tumors using scintimammographic imaging. 99mTc-Mito10-MAG3 possesses advantageous radiopharmaceutical properties. The uptake in the myocardium is reduced by one to two orders of magnitude compared to 99mTc-MIBI. 99mTc-Mito10-MAG3 exhibits fast blood clearance, with a blood half-life of less than 2 minutes in rats. A diminished myocardial uptake combined with a prompt reduction of cardiovascular blood pool signal to facilitate improved signal-to-background ratios.
    Type: Application
    Filed: February 27, 2009
    Publication date: September 3, 2009
    Inventors: Marcos Lopez, Micael Joel Hardy, Balaraman Kalyanaraman, Ming Zhao
  • Publication number: 20090214624
    Abstract: The present invention is related to topical nitric oxide delivery systems, and to using the same for mitigating or remediating various disease states The present invention is also related to using topical nitric oxide delivery systems for enhancing blood flow.
    Type: Application
    Filed: November 29, 2005
    Publication date: August 27, 2009
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Daniel J. Smith, Marco Lopez, Patricio Lopez-Jaramillo
  • Publication number: 20090214437
    Abstract: A system and method for acquiring MR imaging data from a subject includes administering positively-charged nitroxides or gadolinium chelates for in vivo mitochondrial labeling, acquiring MR imaging data from the subject, and reconstructing an image of the subject having enhanced contrast in areas including metabolic and/or mitotic activity.
    Type: Application
    Filed: February 23, 2009
    Publication date: August 27, 2009
    Applicant: Medical College of Wisconsin Research Foundation
    Inventors: Balaraman Kalyanaraman, Joy Joseph, Kathleen Marie Schmainda, Douglas Edward Prah, Marcos Lopez, Micael J. Hardy
  • Publication number: 20090170134
    Abstract: Methods and compositions for detecting free radicals, the compositions being spin trapping compounds comprising a nitrone having a detecting moiety and optionally having a targeting moiety for targeting the nitrone to an organ, a cell, an organelle or a molecule of interest for directly detecting free radicals, especially free radicals in biological samples.
    Type: Application
    Filed: December 24, 2008
    Publication date: July 2, 2009
    Inventors: Micael Joel Hardy, Marcos Lopez, Balaraman Kalyanaraman, Neil Hogg, Olivier Ouari, Paul Tordo
  • Publication number: 20090069449
    Abstract: The present invention relates generally to nitric oxide releasing pharmaceutical compounds. More particularly, the present invention relates to pharmaceutical compositions that release nitric oxide under physiological conditions. In one embodiment, the present invention relates to new chemical compounds—diazeniumdiolates nitric oxide donors—that are based on ethambutol possessing physiological and biomedical activity.
    Type: Application
    Filed: March 3, 2006
    Publication date: March 12, 2009
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Daniel J. Smith, Marcos Lopez
  • Publication number: 20080214389
    Abstract: The invention relates to a carbon-supported PtRu anode catalyst for direct methanol fuel cells (DMFC) which has a platinum/ruthenium content in the range from 80 to 98 wt. %, preferably in the range from 85 to 98 wt. %, particularly preferably in the range from 85 to 95 wt. % (based on the total weight of the catalyst), on a carbon-based electrically conductive support material and has a mean particle size of less than 3 nm. The catalyst is prepared using a carbon black support material having a specific surface area (measured by the BET method) in the range from 1000 to 2000 m2/g by means of a reduction process using chemical reducing agents with addition of organic acids. Electrodes and membrane-electrode units containing the catalyst according to the invention having a high precious metal loading have an electrode layer thickness of less than 80 ?m at a PtRu loading per unit area of the electrode of from 6 to 12 mg of PtRu/cm and lead to improved electric power in direct methanol fuel cells.
    Type: Application
    Filed: August 13, 2005
    Publication date: September 4, 2008
    Inventors: Marco Lopez, Peter Biberbach
  • Publication number: 20080191161
    Abstract: The invention relates to an ink for producing catalyst layers for electrochemical devices. The ink comprises catalyst material, ionomer material, water and at least one organic solvent. The organic solvent belongs to the class of tertiary alcohol's and/or the class of aliphatic diketones and bears functional groups which are stable to oxidative degradation in the ink. This prevents formation of decomposition products in the ink. The ink of the invention displays a high storage stability and is used for producing catalyst-coated substrates for electrochemical devices, in particular fuel cells (PEMFCs, DMFCs).
    Type: Application
    Filed: March 25, 2006
    Publication date: August 14, 2008
    Inventors: Walter Behl, Marco Lopez
  • Publication number: 20080064771
    Abstract: The invention relates to a process for recycling fuel cell components containing fluorine-containing and precious metal-containing constituents: in this process, the fluorine-containing constituents are separated off from the precious metal-containing constituents by treatment with a medium present in the supercritical state. Preference is given to using water as supercritical medium. After the fluorine-containing constituents have been separated off, the precious metal-containing residues can be recovered in a recycling process without harmful fluorine or hydrogen fluoride emissions. The fluorine-containing constituents can likewise be recovered. The process is used in the recovery of precious metals and/or fluorine-containing constituents from membrane fuel cells, electrolysis cells, batteries, sensors and other electrochemical devices.
    Type: Application
    Filed: August 31, 2005
    Publication date: March 13, 2008
    Inventors: Joachim Koehler, Ralf Zuber, Matthias Binder, Volker Baenisch, Marco Lopez
  • Publication number: 20080044692
    Abstract: The invention relates to heterogeneous catalysts which are particularly easy to produce. Said heterogeneous catalysts are generated by immobilizing preformed monometallic or multimetallic metal oxide particles in situ on an oxidic or non-oxidic carrier, wherefore metal oxide colloids which are stabilized by hydroxide ions and immobilized on carriers contained in the suspension are generated from conventional, water-soluble metal salts by means of hydrolysis and condensation. The inventive method makes it possible to produce fuel cell catalysts, for example.
    Type: Application
    Filed: June 11, 2007
    Publication date: February 21, 2008
    Applicant: STUDIENGESELLSCHAFT KOHLE MBH
    Inventors: MANFRED REETZ, MARCO LOPEZ
  • Publication number: 20070292744
    Abstract: The invention is directed to iridium oxide based catalysts for use as anode catalysts in PEM water electrolysis. The claimed composite catalyst materials comprise iridium oxide (IrO2) and optionally ruthenium oxide (RuO2) in combination with a high surface area inorganic oxide (for example TiO2, Al2O3, ZrO2 and mixtures thereof). The inorganic oxide has a BET surface area in the range of 50 to 400 m2/g, a water solubility of lower than 0.15 g/l and is present in a quantity of less than 20 wt. % based on the total weight of the catalyst. The claimed catalyst materials are characterised by a low oxygen overvoltage and long lifetime in water electrolysis. The catalysts are used in electrodes, catalyst-coated membranes and membrane-electrode-assemblies for PEM electrolyzers as well as in regenerative fuel cells (RFC), sensors, and other electrochemical devices.
    Type: Application
    Filed: October 29, 2004
    Publication date: December 20, 2007
    Applicant: UMICORE AG &, ANDREAS
    Inventors: Marco Lopez, Andreas Schleunung, Peter Biberbach
  • Publication number: 20070248846
    Abstract: The invention relates to a process for producing a five-layer membrane-electrode unit comprising an ionomer membrane, a first catalyst layer, a second catalyst layer, a first gas diffusion layer and a second gas diffusion layer. In the process of the invention, at least one gas diffusion layer is provided with a suitable perforation grid before or after coating with the catalyst. The excess gas diffusion material is removed as pressed screen after lamination of the gas diffusion layer onto the membrane, exposing the uncoated membrane areas. The process is suitable for the continuous production of five-layer membrane-electrode units of type 1 (in which the membrane forms a rim projecting beyond the two gas diffusion layers) and of type 3 (in which gas diffusion layers and membrane have a step-like, semicoextensive design). Two process variants in which dried and undried (i.e. solvent-containing) catalyst layers are laminated onto the membrane are described.
    Type: Application
    Filed: August 27, 2005
    Publication date: October 25, 2007
    Applicant: UMICORE AG & CO KG
    Inventors: Claus-Rupert Hohenthanner, Marco Lopez, Joachim Koehler
  • Patent number: 7244688
    Abstract: The invention relates to heterogeneous catalysts which are particularly easy to produce. Said heterogeneous catalysts are generated by immobilizing preformed monometallic or multimetallic metal oxide particles in situ on an oxidic or non-oxidic carrier, wherefore metal oxide colloids which are stabilized by hydroxide ions and immobilized on carriers contained in the suspension are generated from conventional, water-soluble metal salts by means of hydrolysis and condensation. The inventive method makes it possible to produce fuel cell catalysts, for example.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: July 17, 2007
    Assignee: Studiengesellschaft Kohle mbH
    Inventors: Manfred T. Reetz, Marco Lopez