Patents by Inventor Marie Denison

Marie Denison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140061859
    Abstract: An integrated circuit containing a stacked bipolar transistor which includes two bipolar transistors connected in series is disclosed. Each bipolar transistor includes a breakdown inducing feature. The breakdown inducing features have reflection symmetry with respect to each other. A process for forming an integrated circuit containing a stacked bipolar transistor which includes two bipolar transistors connected in series, with breakdown inducing features having reflection symmetry, is also disclosed.
    Type: Application
    Filed: November 6, 2013
    Publication date: March 6, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Sameer Pendharkar, Marie Denison, Yongxi Zhang
  • Publication number: 20140061789
    Abstract: An integrated circuit containing an extended drain MOS transistor with deep semiconductor (SC) RESURF trenches in the drift region, in which each deep SC RESURF trench has a semiconductor RESURF layer at a sidewall of the trench contacting the drift region. The semiconductor RESURF layer has an opposite conductivity type from the drift region. The deep SC RESURF trenches have depth:width ratios of at least 5:1, and do not extend through a bottom surface of the drift region. A process of forming an integrated circuit with deep SC RESURF trenches in the drift region by etching undersized trenches and counterdoping the sidewall region to form the semiconductor RESURF layer. A process of forming an integrated circuit with deep SC RESURF trenches in the drift region by etching trenches and growing an epitaxial layer on the sidewall region to form the semiconductor RESURF layer.
    Type: Application
    Filed: November 6, 2013
    Publication date: March 6, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Marie Denison, Sameer Pendharkar
  • Patent number: 8648416
    Abstract: An integrated circuit includes a high voltage n-channel MOS power transistor integrated with a high voltage n-channel MOS blocking transistor. The power transistor and the blocking transistor have electrically coupled drain contact regions. In one embodiment, a drain area of the power transistor is separate from a drain area of the blocking transistor. In another embodiment, the drain area of the power transistor is contiguous with the drain area of the blocking transistor. The power transistor and the blocking transistor have drain extensions with drift areas. The power transistor drift area is laterally adjacent to both sides of the blocking transistor drift area. The drift areas are aligned so that breakdown does not occur between the power transistor and the blocking transistor. The body of the blocking transistor is isolated from the substrate.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: February 11, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Joseph Maurice Khayat, Marie Denison
  • Patent number: 8643099
    Abstract: An integrated circuit containing a dual drift layer extended drain MOS transistor with an upper drift layer contacting a lower drift layer along at least 75 percent of a common length of the two drift layers. An average doping density in the lower drift layer is between 2 and 10 times an average doping density in the upper drift layer. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, using an epitaxial process. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, on a monolithic substrate.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: February 4, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Sameer Pendharkar, Philip L. Hower
  • Publication number: 20140021983
    Abstract: An integrated circuit including a high-voltage n-channel MOS power transistor, a high-voltage n-channel MOS blocking transistor, a high-voltage n-channel MOS reference transistor, and a voltage comparator, configured to provide an overcurrent signal if drain current through the power transistor in the on state exceeds a predetermined value. The power transistor source node is grounded. The blocking transistor drain node is connected to the power transistor drain node. The blocking transistor source node is coupled to the comparator non-inverting input. The reference transistor drain node is fed by a current source and is connected to the comparator inverting input. The reference transistor gate node is coupled to a gate node of the power transistor. The comparator output provides the overcurrent signal. A process of operating the integrated circuit is disclosed.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Joseph M. Khayat, Marie Denison
  • Publication number: 20140021540
    Abstract: An integrated circuit includes a high voltage n-channel MOS power transistor integrated with a high voltage n-channel MOS blocking transistor. The power transistor and the blocking transistor have electrically coupled drain contact regions. In one embodiment, a drain area of the power transistor is separate from a drain area of the blocking transistor. In another embodiment, the drain area of the power transistor is contiguous with the drain area of the blocking transistor. The power transistor and the blocking transistor have drain extensions with drift areas. The power transistor drift area is laterally adjacent to both sides of the blocking transistor drift area. The drift areas are aligned so that breakdown does not occur between the power transistor and the blocking transistor. The body of the blocking transistor is isolated from the substrate.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Joseph Maurice Khayat, Marie Denison
  • Patent number: 8617960
    Abstract: A capacitive microphone transducer integrated into an integrated circuit includes a fixed plate and a membrane formed in or above an interconnect region of the integrated circuit. A process of forming an integrated circuit containing a capacitive microphone transducer includes etching access trenches through the fixed plate to a region defined for the back cavity, filling the access trenches with a sacrificial material, and removing a portion of the sacrificial material from a back side of the integrated circuit.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: December 31, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Brian E. Goodlin, Wei-Yan Shih, Lance W. Barron
  • Patent number: 8598008
    Abstract: An integrated circuit containing a stacked bipolar transistor which includes two bipolar transistors connected in series is disclosed. Each bipolar transistor includes a breakdown inducing feature. The breakdown inducing features have reflection symmetry with respect to each other. A process for forming an integrated circuit containing a stacked bipolar transistor which includes two bipolar transistors connected in series, with breakdown inducing features having reflection symmetry, is also disclosed.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: December 3, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer P. Pendharkar, Marie Denison, Yongxi Zhang
  • Publication number: 20130307375
    Abstract: A planar integrated MEMS device has a piezoelectric element on a dielectric isolation layer over a flexible element attached to a proof mass. The piezoelectric element contains a ferroelectric element with a perovskite structure formed over an isolation dielectric. At least two electrodes are formed on the ferroelectric element. An upper hydrogen barrier is formed over the piezoelectric element. Front side singulation trenches are formed at a periphery of the MEMS device extending into the semiconductor substrate. A DRIE process removes material from the bottom side of the substrate to form the flexible element, removes material from the substrate under the front side singulation trenches, and forms the proof mass from substrate material. The piezoelectric element overlaps the flexible element.
    Type: Application
    Filed: July 19, 2013
    Publication date: November 21, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kezhakkedath R. Udayakumar, Marie Denison, Theodore S. Moise
  • Patent number: 8580650
    Abstract: An integrated circuit containing an extended drain MOS transistor with deep semiconductor (SC) RESURF trenches in the drift region, in which each deep SC RESURF trench has a semiconductor RESURF layer at a sidewall of the trench contacting the drift region. The semiconductor RESURF layer has an opposite conductivity type from the drift region. The deep SC RESURF trenches have depth:width ratios of at least 5:1, and do not extend through a bottom surface of the drift region. A process of forming an integrated circuit with deep SC RESURF trenches in the drift region by etching undersized trenches and counterdoping the sidewall region to form the semiconductor RESURF layer. A process of forming an integrated circuit with deep SC RESURF trenches in the drift region by etching trenches and growing an epitaxial layer on the sidewall region to form the semiconductor RESURF layer.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: November 12, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Sameer Pendharkar
  • Patent number: 8581660
    Abstract: A power transistor module including a power transistor with a first common power node, and a split control node. A first clip is connected to a portion of a second power node so that current through a first control segment of the control node is directed through a first transistor portion and through the first clip. A second clip is connected to another portion of the second power node so that current through a second control segment is directed through a second transistor portion and through the second clip. A ratio of an area of the first transistor portion to a combined area of the first and second portions is 5 percent to 75 percent. A shunt is coupled in series to the first clip. The shunt may be directly electrically connected to the first portion of the power transistor.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: November 12, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Ubol Udompanyavit, Osvaldo Jorge Lopez, Joseph Maurice Khayat
  • Patent number: 8575015
    Abstract: One embodiment relates to an integrated circuit that includes a lateral trench MOSFET disposed in a semiconductor body. The lateral trench MOSFET includes source and drain regions having a body region therebetween. A gate electrode region is disposed in a trench that extends beneath the surface of the semiconductor body at least partially between the source and drain. A gate dielectric separates the gate electrode region from the semiconductor body. In addition, a field plate region in the trench is coupled to the gate electrode region, and a field plate dielectric separates the field plate region from the semiconductor body. Other integrated circuits and methods are also disclosed.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: November 5, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Marie Denison
  • Publication number: 20130285260
    Abstract: A Multi-Chip Module (MCM) package includes a substrate having a plurality of metal terminals and at least a first die attach area. An encapsulant is around the substrate including on at least a portion of the topside and at least a portion of the bottomside of the package. At least a first device including at least two device terminals is attached face up on the first die attach area. At least a second device including at least two device terminals is flip-chip attached and stacked on the first device. At least one of the first device and second device include a transistor. At least one metal clip is between the first device and second device including a plurality of clip portions isolated from one another connecting at least one device terminal of each of the first device and second device to respective metal terminals of the plurality of metal terminals.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 31, 2013
    Applicant: Texas Instruments Incorporated
    Inventors: MARIE DENISON, RICHARD SAYE, TAKAHIKO KUDOH, SATYENDRA SINGH CHAUHAN
  • Publication number: 20130277739
    Abstract: An integrated circuit containing a dual drift layer extended drain MOS transistor with an upper drift layer contacting a lower drift layer along at least 75 percent of a common length of the two drift layers. An average doping density in the lower drift layer is between 2 and 10 times an average doping density in the upper drift layer. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, using an epitaxial process. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, on a monolithic substrate.
    Type: Application
    Filed: June 20, 2013
    Publication date: October 24, 2013
    Inventors: Marie Denison, Sameer Pendharkar, Philip L. Hower
  • Publication number: 20130278328
    Abstract: A power transistor module including a power transistor with a first common power node, and a split control node. A first clip is connected to a portion of a second power node so that current through a first control segment of the control node is directed through a first transistor portion and through the first clip. A second clip is connected to another portion of the second power node so that current through a second control segment is directed through a second transistor portion and through the second clip. A ratio of an area of the first transistor portion to a combined area of the first and second portions is 5 percent to 75 percent. A shunt is coupled in series to the first clip. The shunt may be directly electrically connected to the first portion of the power transistor.
    Type: Application
    Filed: April 24, 2012
    Publication date: October 24, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Ubol Udompanyavit, Osvaldo Jorge Lopez, Joseph Maurice Khayat
  • Patent number: 8496842
    Abstract: A planar integrated MEMS device has a piezoelectric element on a dielectric isolation layer over a flexible element attached to a proof mass. The piezoelectric element contains a ferroelectric element with a perovskite structure formed over an isolation dielectric. At least two electrodes are formed on the ferroelectric element. An upper hydrogen barrier is formed over the piezoelectric element. Front side singulation trenches are formed at a periphery of the MEMS device extending into the semiconductor substrate. A DRIE process removes material from the bottom side of the substrate to form the flexible element, removes material from the substrate under the front side singulation trenches, and forms the proof mass from substrate material. The piezoelectric element overlaps the flexible element.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: July 30, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Kezhakkedath R. Udayakumar, Marie Denison, Ted S. Moise
  • Patent number: 8492233
    Abstract: An integrated circuit containing a configurable dual n/p-channel 3-D resurf high voltage MOS field effect transistor (MOSFET) is disclosed. An n-channel drain is coterminous with a p-channel source in an n-well, and a p-channel drain is coterminous with an n-channel source in a p-well. A lateral drift region including n-type drift lanes and p-type drift lanes extends between the n and p wells. A resurf layer abuts the lateral drift region. The n-channel MOS gate is separate from the p-channel MOS gate. The p-channel MOS gate may be operated as a field plate in the n-channel mode, and vice versa. An n-channel MOS transistor may be integrated into the n-channel MOS source to provide an n-channel cascode transistor configuration, and similarly for a p-channel cascode configuration, to debias parasitic bipolar transistors under the MOS gates. Circuits using the MOSFET with various loads are also disclosed.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: July 23, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Hannes Estl
  • Patent number: 8476127
    Abstract: An integrated circuit containing a dual drift layer extended drain MOS transistor with an upper drift layer contacting a lower drift layer along at least 75 percent of a common length of the two drift layers. An average doping density in the lower drift layer is between 2 and 10 times an average doping density in the upper drift layer. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, using an epitaxial process. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, on a monolithic substrate.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: July 2, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Sameer Pendharkar, Philip L. Hower
  • Patent number: 8471337
    Abstract: An integrated circuit is disclosed having a semiconductor component comprising a first p-type region and a first n-type region adjoining the first p-type region, which together form a first pn junction having a breakdown voltage. A further n-type region adjoining the first p-type region or a further p-type region adjoining the first n-type region is provided, the first p-type or n-type region and the further n-type or p-type region adjoining the latter together forming a further pn junction having a further breakdown voltage, the first pn junction and the further pn junction being connected or connectable to one another in such a way that, in the case of an overloading of the semiconductor component, on account of a current loading of the first pn junction, first of all the further pn junction breaks down.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: June 25, 2013
    Assignee: Infineon Technologies AG
    Inventors: Nils Jensen, Marie Denison
  • Patent number: 8429592
    Abstract: A process of operating a computer system to create a subcircuit model of an N/P configurable extended drain MOS transistor in which the subcircuit model includes an npn bipolar transistor and a pnp bipolar transistor which correspond to current paths through n-channel drift lanes and p-channel drift lanes during dual mode operation. A process of operating a computer system to simulate the behavior of an electronic circuit including a N/P configurable extended drain MOS transistor in which a subcircuit model of the N/P configurable extended drain MOS transistor includes an npn bipolar transistor and a pnp bipolar transistor which correspond to current paths through n-channel drift lanes and p-channel drift lanes during dual mode operation. A computer readable medium storing an electronic circuit simulation program that generates a simulation output of the behavior of an electronic circuit including a N/P configurable extended drain MOS transistor.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: April 23, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Yong Liu, Keith R. Green, Marie Denison, Yizhong Xie