Patents by Inventor Mark Crockett

Mark Crockett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9780829
    Abstract: A method, apparatus, computer program, data structure, signal relating to: causing correlation of a digital signal provided by a receiver with a motion-compensated correlation code, wherein the motion-compensated correlation code is a correlation code that has been compensated before correlation using one or more phasors dependent upon an assumed or measured movement of the receiver.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: October 3, 2017
    Assignee: Focal Point Positioning Ltd.
    Inventors: Ramsey Faragher, Nicolas Couronneau, Robert Mark Crockett
  • Publication number: 20170279486
    Abstract: A method, apparatus, computer program, data structure, signal relating to: causing correlation of a digital signal provided by a receiver with a motion-compensated correlation code, wherein the motion-compensated correlation code is a correlation code that has been compensated before correlation using one or more phasors dependent upon an assumed or measured movement of the receiver.
    Type: Application
    Filed: March 24, 2016
    Publication date: September 28, 2017
    Inventors: Ramsey Faragher, Nicolas Couronneau, Robert Mark Crockett
  • Publication number: 20170279598
    Abstract: A method, apparatus, computer program, and data structure relating to: causing correlation of a digital signal provided by a receiver with a motion-compensated correlation code, wherein the motion-compensated correlation code is a correlation code that has been compensated before correlation using one or more phasors dependent upon an assumed or measured movement of the receiver.
    Type: Application
    Filed: March 21, 2017
    Publication date: September 28, 2017
    Inventors: Ramsey Faragher, Nicolas Couronneau, Robert Mark Crockett, Peter Duffett-Smith
  • Patent number: 8656953
    Abstract: A method of preventing a mass flow controller from participating in crosstalk in an array of mass flow controllers is described. The method includes sensing and providing a signal indicative of a fluid pressure inside of a mass flow controller with a pressure sensor contained within the mass flow controller, determining a response of a control valve to a rapid pressure perturbation at the inlet of the mass flow controller using the signal indicative of the fluid pressure to avoid overcompensation for the rapid pressure perturbation, and adjusting a control valve contained within the mass flow controller downstream of the pressure sensor, based on the determined response, so that the mass flow controller avoids overcompensating for the rapid pressure perturbation. The pressure sensor is positioned such that the pressure sensor is sensitive to rapid pressure perturbations at the inlet of the mass flow controller.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: February 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Balarabe Nuhu Mohammed, Philip Barros, Raul A. Martin, Mark A. Crockett, Eric S. Sklar
  • Patent number: 8127783
    Abstract: A method of preventing a mass flow controller from participating in crosstalk in an array of mass flow controllers is described. The method includes sensing and providing a signal indicative of a fluid pressure inside of a mass flow controller with a pressure sensor contained within the mass flow controller, determining a response of a control valve to a rapid pressure perturbation at the inlet of the mass flow controller using the signal indicative of the fluid pressure to avoid overcompensation for the rapid pressure perturbation, and adjusting a control valve contained within the mass flow controller downstream of the pressure sensor, based on the determined response, so that the mass flow controller avoids overcompensating for the rapid pressure perturbation. The pressure sensor is positioned such that the pressure sensor is sensitive to rapid pressure perturbations at the inlet of the mass flow controller.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: March 6, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Mohammed Nuhu Balarabe, Philip Barros, Raul A. Martin, Mark A. Crockett, Eric S. Sklar
  • Patent number: 8020750
    Abstract: A space-conserving integrated fluid delivery system which is particularly useful for gas distribution in semiconductor processing equipment. The invention also includes an integrated fluid flow network architecture, which may include, in addition to a layered substrate containing fluid flow channels, various fluid handling and monitoring components. The layered substrate is diffusion bonded, and may be partially integrated or fully integrated into a processing chamber which also includes diffusion bonded layers.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: September 20, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Mark Crockett, John W. Lane, Micahel DeChellis, Chris Melcer, Erica Porras, Aneesh Khullar, Balarabe N. Mohammed
  • Patent number: 8017028
    Abstract: A space-conserving integrated fluid delivery system which is particularly useful for gas distribution in semiconductor processing equipment. The invention also includes an integrated fluid flow network architecture, which may include, in addition to a layered substrate containing fluid flow channels, various fluid handling and monitoring components. The layered substrate is diffusion bonded, and the various fluid handling and monitoring components may be partially integrated or fully integrated into the substrate, depending on design and material requirements.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: September 13, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Mark Crockett, John W. Lane, Micahel DeChellis, Chris Melcer, Erica Porras, Aneesh Khullar, Balarabe N. Mohammed
  • Patent number: 7984891
    Abstract: A space-conserving integrated fluid delivery system which is particularly useful for gas distribution in semiconductor processing equipment. The fluid delivery system includes an integrated fluid flow network architecture, which may include, in addition to a layered substrate containing fluid flow channels, various fluid handling and monitoring components. The layered substrate is diffusion bonded, and the various fluid handling and monitoring components may be partially integrated or fully integrated into the substrate, depending on design and material requirements.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: July 26, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Mark Crockett, John W. Lane, Michael J. DeChellis, Chris Melcer, Erica R. Porras, Aneesh Khullar, Balarabe N. Mohammed
  • Patent number: 7850786
    Abstract: Described is a space-conserving integrated fluid delivery system particularly useful for gas distribution in semiconductor processing equipment. The system includes integrated fluid flow network architecture, and may include, in addition to a layered substrate containing fluid flow channels, various fluid handling and monitoring components. The layered substrate is diffusion bonded. Subsequent to diffusion bonding, a stainless steel diffusion bonded part may advantageously be treated to enhance corrosion resistance using a series of steps designed to bring more chromium to the surface of the steel.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: December 14, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Mark Crockett, John W. Lane, Micahel DeChellis, Chris Melcer, Erica Porras, Aneesh Khullar, Balarabe N. Mohammed
  • Patent number: 7798388
    Abstract: The present invention relates to a method of diffusion bonding of steel and steel alloys, to fabricate a fluid delivery system of the kind which would be useful in semiconductor processing and in other applications which require high purity fluid handling.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: September 21, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Mark Crockett, John W. Lane, Vincent Kirchhoff, Marcel E. Josephson, Hong P. Gao, Bhaswan Manjunath
  • Patent number: 7559527
    Abstract: A space-conserving integrated fluid delivery system which is particularly useful for gas distribution in semiconductor processing equipment. The fluid delivery system includes an integrated fluid flow network architecture, which may include, in addition to a layered substrate containing fluid flow channels, various fluid handling and monitoring components. The layered substrate is diffusion bonded, and the various fluid handling and monitoring components may be partially integrated or fully integrated into the substrate, depending on design and material requirements.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: July 14, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Mark Crockett, John W. Lane, Micahel DeChellis, Chris Melcer, Erica Porras, Aneesh Khullar, Balarabe N. Mohammed
  • Publication number: 20090072009
    Abstract: The present invention relates to diffusion bonding of patterned sheets to form a fluid flow handling structure, and to a method of preventing bonding between a load distribution block and a plate set of stacked sheets during the diffusion bonding process.
    Type: Application
    Filed: October 21, 2008
    Publication date: March 19, 2009
    Inventors: Mark Crockett, John W. Lane, Vincent Kirchhoff, Marcel E. Josephson, Hong P. Gao, Bhaswan Manjunath
  • Publication number: 20090057375
    Abstract: The present invention relates to a method of diffusion bonding sheets of patterned material to fabricate a fluid delivery system; and particularly relates to a method of improving the interior surface roughness of fluid flow conduits formed within the diffusion bonded fluid delivery system structure.
    Type: Application
    Filed: October 21, 2008
    Publication date: March 5, 2009
    Inventors: Mark Crockett, John W. Lane, Vincent Kirchhoff, Marcel E. Josephson, Hong P. Gao, Bhaswan Manjunath
  • Publication number: 20090039057
    Abstract: A space-conserving integrated fluid delivery system which is particularly useful for gas distribution in semiconductor processing equipment. The invention also includes an integrated fluid flow network architecture, which may include, in addition to a layered substrate containing fluid flow channels, various fluid handling and monitoring components. The layered substrate is diffusion bonded, and the various fluid handling and monitoring components may be partially integrated or fully integrated into the substrate, depending on design and material requirements.
    Type: Application
    Filed: October 14, 2008
    Publication date: February 12, 2009
    Inventors: Mark Crockett, John W. Lane, Micahel J. DeChellis, Chris Melcer, Erica R. Porras, Aneesh Khullar, Balarabe N. Mohammed
  • Publication number: 20080296354
    Abstract: The present invention relates to stainless steel sheets which would be useful in semiconductor processing and in other applications which require high purity fluid handling. The invention also relates to a method of selecting and processing such sheets.
    Type: Application
    Filed: May 31, 2007
    Publication date: December 4, 2008
    Inventors: MARK CROCKETT, John W. Lane, Vincent Kirchhoff, Marcel E. Josephson, Hong P. Gao, Bhaswan Manjunath
  • Publication number: 20080296351
    Abstract: The present invention relates to a method of diffusion bonding of steel and steel alloys, to fabricate a fluid delivery system of the kind which would be useful in semiconductor processing and in other applications which require high purity fluid handling.
    Type: Application
    Filed: May 31, 2007
    Publication date: December 4, 2008
    Inventors: Mark Crockett, John W. Lane, Vincent Kirchhoff, Marcel E. Josephson, Hong P. Gao, Bhaswan Manjunath
  • Patent number: 7459003
    Abstract: A space-conserving integrated fluid delivery system which is particularly useful for gas distribution in semiconductor processing equipment. The invention pertains to a diffusion bonded integrated fluid flow network architecture, which includes, in addition to a layered substrate containing fluid flow channels, an in-line filter and may include various fluid handling and monitoring components. The integrated fluid delivery system that is formed from a layered substrate is diffusion bonded, and the various fluid handling and monitoring components may be partially integrated or fully integrated into the substrate, depending on design and material requirements.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: December 2, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Mark Crockett, John W. Lane, Micahel DeChellis, Chris Melcer, Erica Porras, Aneesh Khullar, Balarabe N. Mohammed
  • Patent number: 7448276
    Abstract: A diffusion bonded space-conserving integrated fluid delivery system which is particularly useful for gas distribution in semiconductor processing equipment. The disclosure includes an integrated fluid flow network architecture, which may include, in addition to a layered substrate containing fluid flow channels, various fluid handling and monitoring components. A capacitive dual electrode pressure sensor which is integrated into a multilayered substrate is described. The pressure sensor may be used as a gage relative to atmospheric pressure if desired for a particular application.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: November 11, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Mark Crockett, John W. Lane, Micahel DeChellis, Chris Melcer, Erica Porras, Aneesh Khullar, Balarabe N. Mohammed
  • Publication number: 20070226973
    Abstract: A space-conserving integrated fluid delivery system which is particularly useful for gas distribution in semiconductor processing equipment. The fluid delivery system includes an integrated fluid flow network architecture, which may include, in addition to a layered substrate containing fluid flow channels, various fluid handling and monitoring components. The layered substrate is diffusion bonded, and the various fluid handling and monitoring components may be partially integrated or fully integrated into the substrate, depending on design and material requirements.
    Type: Application
    Filed: April 19, 2007
    Publication date: October 4, 2007
    Inventors: Mark Crockett, John Lane, Michael DeChellis, Chris Melcer, Erica Porras, Aneesh Khullar, Balarabe Mohammed
  • Publication number: 20070200082
    Abstract: The disclosure pertains to a space-conserving integrated fluid delivery system which is particularly useful for gas distribution in semiconductor processing equipment. The present invention also pertains to an integrated fluid flow network architecture, which may include, in addition to a layered substrate containing fluid flow channels, various fluid handling and monitoring components. The layered substrate is diffusion bonded, and the various fluid handling and monitoring components may be partially integrated or fully integrated into the substrate, depending on design and material requirements.
    Type: Application
    Filed: April 20, 2007
    Publication date: August 30, 2007
    Inventors: Mark Crockett, John Lane, Michael DeChellis, Chris Melcer, Erica Porras, Aneesh Khullar, Balarabe Mohammed