Patents by Inventor Mark J. Hampden-Smith

Mark J. Hampden-Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7625420
    Abstract: Copper metal powders, methods for producing copper metal powders and products incorporating the powders. The copper metal powders have a small particle size, narrow size distribution and a spherical morphology. The method includes forming the metal particles in a continuous manner.
    Type: Grant
    Filed: February 24, 1998
    Date of Patent: December 1, 2009
    Assignee: Cabot Corporation
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, James Caruso, Daniel J. Skamser, Quint H. Powell, Clive D. Chandler
  • Patent number: 7621976
    Abstract: Provided are silver-containing powders and a method and apparatus for manufacturing the silver-containing particles of high quality, of a small size and narrow size distribution. An aerosol is generated from liquid feed and sent to a furnace, where liquid in droplets in the aerosol is vaporized to permit formation of the desired particles, which are then collected in a particle collector. The aerosol generation involves preparation of a high quality aerosol, with a narrow droplet size distribution, with close control over droplet size and with a high droplet loading suitable for commercial applications.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: November 24, 2009
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Quint H. Powell, Daniel J. Skamser, James Caruso, Clive Chandler
  • Patent number: 7597769
    Abstract: Provided are silver-containing powders and a method and apparatus for manufacturing the silver-containing particles of high quality, of a small size and narrow size distribution. An aerosol is generated from liquid feed and sent to a furnace, where liquid in droplets in the aerosol is vaporized to permit formation of the desired particles, which are then collected in a particle collector. The aerosol generation involves preparation of a high quality aerosol, with a narrow droplet size distribution, with close control over droplet size and with a high droplet loading suitable for commercial applications.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: October 6, 2009
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Quint H. Powell, Daniel J. Skamser, James Caruso, Clive Chandler
  • Patent number: 7599165
    Abstract: Provided are palladium-containing powders and a method and apparatus for manufacturing the palladium-containing particles of high quality, of a small size and narrow size distribution. An aerosol is generated from liquid feed and sent to a furnace, where liquid in droplets in the aerosol is vaporized to permit formation of the desired particles, which are then collected in a particle collector. The aerosol generation involves preparation of a high quality aerosol, with a narrow droplet size distribution, with close control over droplet size and with a high droplet loading suitable for commercial applications. Powders may have high resistance to oxidation of palladium. Multi-phase particles are provided including a palladium-containing metallic phase and a second phase that is dielectric. Electronic components are provided manufacturable using the powders.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: October 6, 2009
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Quint H. Powell, Daniel J. Skamser, James Caruso, Clive D. Chandler
  • Patent number: 7582134
    Abstract: Provided is an aerosol method, and accompanying apparatus, for preparing powdered products of a variety of materials involving the use of an ultrasonic aerosol generator (106) including a plurality of ultrasonic transducers (120) underlying and ultrasonically energizing a reservoir of liquid feed (102) which forms droplets of the aerosol. Carrier gas (104) is delivered to different portions of the reservoir by a plurality of gas delivery ports (136) delivering gas from a gas delivery system. The aerosol is pyrolyzed to form particles, which are then cooled and collected. The invention also provides powders made by the method and devices made using the powders.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: September 1, 2009
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Quint H. Powell, Daniel J. Skamser, James Caruso, Clive D. Chandler
  • Patent number: 7578986
    Abstract: Materials that are useful for absorption enhanced reforming (AER) of a fuel, including absorbent materials such as Group 1 and Group 2 metal oxides that are adapted to absorb CO2 and catalyst materials such as reforming catalysts and water-gas shift catalysts, and methods for using the materials. The materials can be fabricated by spray processing. The use of the materials in AER can produce a H2 product gas having a high H2 content and a low level of carbon oxides.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: August 25, 2009
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Paolina Atanassova, Jian-Ping Shen, Paul Napolitano, James Brewster
  • Patent number: 7575621
    Abstract: A process for the production of metal nanoparticles. Nanoparticles are formed by combining a metal compound with a solution that comprises a polyol and a substance that is capable of being adsorbed on the nanoparticles. The nanoparticles are precipitated by adding a nanoparticle-precipitating liquid in a sufficient amount to precipitate at least a substantial portion of the nanoparticles and of a protic solvent in a sufficient amount to improve the separation of the nanoparticles from the liquid phase.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: August 18, 2009
    Assignee: Cabot Corporation
    Inventors: Karel Vanheusden, Hyungrak Kiim, Aaron D. Stump, Allen B. Schult, Mark J. Hampden-Smith, Chuck Edwards, Anthony R. James, James Caruso, Toivo T. Kodas, Scott Thomas Haubrich, Mark H. Kowalski
  • Patent number: 7553512
    Abstract: Precursor compositions for the fabrication of electronic features such as resistors and capacitors. The precursor compositions are formulated to have a low conversion temperature, such as not greater than about 350° C., thereby enabling the fabrication of such electronic features on a variety of substrates, including organic substrates such as polymer substrates.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: June 30, 2009
    Assignee: Cabot Corporation
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron D. Stump, Allen B. Schult, Paolina Atanassova, Klaus Kunze
  • Patent number: 7553433
    Abstract: Provided is an aerosol method, and accompanying apparatus, for preparing powdered products of a variety of materials involving the use of an ultrasonic aerosol generator (106) including a plurality of ultrasonic transducers (120) underlying and ultrasonically energizing a reservoir of liquid feed (102) which forms droplets of the aerosol. Carrier gas (104) is delivered to different portions of the reservoir by a plurality of gas delivery ports (136) delivering gas from a gas delivery system. The aerosol is pyrolyzed to form particles, which are then cooled and collected. The invention also provides powders made by the method and devices made using the powders.
    Type: Grant
    Filed: February 19, 2007
    Date of Patent: June 30, 2009
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Quint H. Powell, Daniel J. Skamser, James Caruso, Clive D. Chandler
  • Publication number: 20090148978
    Abstract: Photovoltaic conductive features and processes for forming photovoltaic conductive features are described. The process comprises (a) providing a substrate comprising a passivation layer disposed on a silicon layer; (b) depositing a surface modifying material onto at least a portion of the passivation layer; (c) depositing a composition comprising at least one of metallic nanoparticles comprising a metal or a metal precursor to the metal onto at least a portion of the substrate; and (d) heating the composition such that it forms at least a portion of a photovoltaic conductive feature in electrical contact with the silicon layer, wherein at least one of the composition or the surface modifying material etches a region of the passivation layer. When the surface modifying material is a UV-curable material, the process comprises the additional step of curing the UV-curable material.
    Type: Application
    Filed: December 7, 2007
    Publication date: June 11, 2009
    Applicant: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Mark H. Kowalski
  • Patent number: 7531108
    Abstract: Photoluminescent phosphor powders and a method for making phosphor powders. The phosphor powders have a small particle size, narrow particle size distribution and are substantially spherical. The method of the invention advantageously permits the economic production of such powders. The invention also relates to improved devices, such as display devices and lighting elements, incorporating the phosphor powders.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: May 12, 2009
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, James Caruso, Daniel J. Skamser, Quint H. Powell, Klaus Kunze
  • Patent number: 7524528
    Abstract: Precursor compositions for the deposition of electronic features such as resistors and dielectric components and methods for the deposition of the precursor compositions. The precursor compositions have a low viscosity, such as not greater than about 1000 centipoise and can be deposited using a direct-write tool. The precursors also have a low conversion temperature, enabling the formation of electronic features on a wide variety of substrates, including low temperature substrates.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: April 28, 2009
    Assignee: Cabot Corporation
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, Karel Vanheusden, Hugh Denham, Aaron D. Stump, Allen B. Schult, Paolina Atanassova, Klaus Kunze
  • Publication number: 20090096351
    Abstract: Reflective electronic layers are provided for electronic devices, such as electroluminescent lamps, photovoltaic devices, and light emitting diodes. Processes for forming such reflective layers are also provided. The reflective layers comprise metallic particles that optionally are coated.
    Type: Application
    Filed: October 12, 2007
    Publication date: April 16, 2009
    Applicant: Cabot Corporation
    Inventors: Mark J. Hampden-smith, Mark H. Kowalski
  • Patent number: 7517606
    Abstract: A fuel cell comprising a catalytic layer including substantially spherical metal-carbon catalyst particles having a weight average particle size of at least about 0.1 micron and not greater than about 20 micron, wherein the catalyst particles comprise a metal phase homogeneously dispersed on a carbon support phase.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: April 14, 2009
    Assignee: Cabot Corporation
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, James Caruso, Daniel J. Skamser, Quint H. Powell
  • Patent number: 7507687
    Abstract: Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: March 24, 2009
    Assignee: Cabot Corporation
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, Plamen Atanassov, Klaus Kunze, Paul Napolitano, Rimple Bhatia, David Dericotte, Paolina Atanassova
  • Patent number: 7476411
    Abstract: A liquid suspension of phosphor particles and method for depositing the liquid suspension. The suspension advantageously has a low viscosity with a high solids-loading of phosphor particles. The apparent density of the phosphor particles is well-controlled to enable the particles to be dispersed in the liquid vehicle. The suspension is useful in direct-write tools such as ink-jet devices.
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: January 13, 2009
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, James Caruso, Daniel J. Skamser
  • Publication number: 20090007815
    Abstract: The present invention relates to a composition having a first response to a first electromagnetic radiation and, after intermediate exposure to a second electromagnetic radiation, a second response to the first electromagnetic radiation, different from the first response. In one aspect, the composition exhibits a regenerated first response to the first electromagnetic radiation after exposure to a third electromagnetic radiation.
    Type: Application
    Filed: July 5, 2007
    Publication date: January 8, 2009
    Applicant: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Liam Noailles, Richard Einhorn
  • Publication number: 20080233422
    Abstract: Nickel powder batches and methods for producing nickel powder batches. The powder batches include particles having a small particle size, narrow size distribution and a spherical morphology. The present invention is also directed to devices incorporating the nickel metal powders.
    Type: Application
    Filed: June 5, 2008
    Publication date: September 25, 2008
    Applicant: CABOT CORPORATION
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, James Caruso, Quint H. Powell, Clive D. Chandler, Daniel J. Skamser
  • Publication number: 20080193370
    Abstract: Materials that are useful for absorption enhanced reforming (AER) of a fuel, including absorbent materials and catalyst materials and methods for using the materials. The materials can be fabricated by spray processing. The use of the materials in AER can produce a H2 product gas having a high H2 content and a low level of carbon oxides.
    Type: Application
    Filed: August 31, 2007
    Publication date: August 14, 2008
    Applicant: CABOT CORPORATION
    Inventors: Mark J. Hampden-Smith, Paolina Atanassova, Jian-Ping Shen, James Brewster, Paul Napolitano
  • Publication number: 20080145633
    Abstract: Photovoltaic conductive features and processes for forming photovoltaic conductive features are described. The process comprises (a) depositing a composition onto at least a portion of a substrate, wherein the composition comprises metal-containing particles having a primary particle size of from about 10 nanometers to less than 500 nanometers and including a continuous or non-continuous coating of a ceramic material; and (b) heating the composition such that the precursor composition forms at least a portion of a photovoltaic conductive feature. The metal-containing particles are preferably produced by flame spraying.
    Type: Application
    Filed: June 19, 2007
    Publication date: June 19, 2008
    Applicant: Cabot Corporation
    Inventors: Toivo T. Kodas, Miodrag Oljaca, Mark J. Hampden-Smith, George P. Fotou, Mark H. Kowalski, Hyungrak Kim