Patents by Inventor Mark R. Hawkins

Mark R. Hawkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7655093
    Abstract: A wafer support system comprising a susceptor having top and bottom sections and gas flow passages therethrough. One or more spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: February 2, 2010
    Assignee: ASM America, Inc.
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs, Frank B. M. Van Bilsen, Matthew Goodman, Hartmann Glenn, Jason M. Layton
  • Patent number: 7186298
    Abstract: A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: March 6, 2007
    Assignee: ASM America, Inc.
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs
  • Patent number: 6861321
    Abstract: One or more of three different measures are taken to preheat a wafer before it is loaded into direct contact with a wafer holder, in order to provide optimal throughput while reducing the risk of thermal shock to the wafer. The first measure is to move the wafer holder to a raised position prior to inserting the wafer into the reaction chamber and holding the wafer above the wafer holder. The second measure is to provide an increased flow rate of a heat-conductive gas (such as Hs purge gas) through the chamber prior to inserting the wafer therein. The third measure is to provide a power bias to radiative heat elements (e.g., heat lamps) above the reaction chamber.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: March 1, 2005
    Assignee: ASM America, Inc.
    Inventors: Tony J. Keeton, Michael R. Stamp, Mark R. Hawkins
  • Publication number: 20040198153
    Abstract: A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer.
    Type: Application
    Filed: August 18, 2003
    Publication date: October 7, 2004
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs, Frank B. M. Van Bilsen, Matthew Goodman, Hartmann Glenn, Jason M. Layton
  • Patent number: 6692576
    Abstract: A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: February 17, 2004
    Assignee: ASM America, Inc.
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs
  • Publication number: 20030190823
    Abstract: One or more of three different measures are taken to preheat a wafer before it is loaded into direct contact with a wafer holder, in order to provide optimal throughput while reducing the risk of thermal shock to the wafer. The first measure is to move the wafer holder to a raised position prior to inserting the wafer into the reaction chamber and holding the wafer above the wafer holder. The second measure is to provide an increased flow rate of a heat-conductive gas (such as Hs purge gas) through the chamber prior to inserting the wafer therein. The third measure is to provide a power bias to radiative heat elements (e.g., heat lamps) above the reaction chamber.
    Type: Application
    Filed: April 5, 2002
    Publication date: October 9, 2003
    Inventors: Tony J. Keeton, Michael R. Stamp, Mark R. Hawkins
  • Publication number: 20030075274
    Abstract: A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer.
    Type: Application
    Filed: September 13, 2002
    Publication date: April 24, 2003
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs, Frank B. M. Van Bilsen, Matthew Goodman, Hartmann Glenn, Jason M. Layton
  • Patent number: 6491757
    Abstract: An apparatus for processing a substrate comprises a susceptor for supporting the substrate, an upper heat source spaced above the susceptor, a lower heat source spaced below the susceptor, and a controller. The controller provides power to the heat sources at a selected ratio between the sources. The controller is configured to vary the ratio during a high temperature processing cycle of a substrate to thereby vary the ratio of the heat provided by the heat sources during the cycle.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: December 10, 2002
    Assignee: ASM America, Inc.
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs, Frank B. M. Van Bilsen, Matthew Goodman, Hartmann Glenn, Jason M. Layton
  • Publication number: 20020179586
    Abstract: An improved chemical vapor deposition reaction chamber having an internal support plate to enable reduced pressure processing. The chamber has a vertical-lateral lenticular cross-section with a wide horizontal dimension and a shorter vertical dimension between bi-convex upper and lower walls. A central horizontal support plate is provided between two lateral side rails of the chamber. A large rounded rectangular aperture is formed in the support plate for positioning a rotatable susceptor on which a wafer is placed. The shaft of the susceptor extends downward through the aperture and through a lower tube depending from the chamber. The support plate segregates the reaction chamber into an upper region and a lower region, with purge gas being introduced through the lower tube into the lower region to prevent unwanted deposition therein. A temperature compensation ring is provided surrounding the susceptor and supported by fingers connected to the support plate.
    Type: Application
    Filed: August 1, 2002
    Publication date: December 5, 2002
    Inventors: John F. Wengert, Loren R. Jacobs, Michael W. Halpin, Derrick W. Foster, Cornelius A. van der Jeugd, Robert M. Vyne, Mark R. Hawkins
  • Patent number: 6464792
    Abstract: An improved chemical vapor deposition reaction chamber having an internal support plate to enable reduced pressure processing. The chamber has a vertical-lateral lenticular cross-section with a wide horizontal dimension and a shorter vertical dimension between bi-convex upper and lower walls. A central horizontal support plate is provided between two lateral side rails of the chamber. A large rounded rectangular aperture is formed in the support plate for positioning a rotatable susceptor on which a wafer is placed. The shaft of the susceptor extends downward through the aperture and through a lower tube depending from the chamber. The support plate segregates the reaction chamber into an upper region and a lower region, with purge gas being introduced through the lower tube into the lower region to prevent unwanted deposition therein. A temperature compensation ring is provided surrounding the susceptor and supported by fingers connected to the support plate.
    Type: Grant
    Filed: July 11, 2000
    Date of Patent: October 15, 2002
    Assignee: ASM America, Inc.
    Inventors: John F. Wengert, Loren R. Jacobs, Michael W. Halpin, Derrick W. Foster, Cornelius A. van der Jeugd, Robert M. Vyne, Mark R. Hawkins
  • Patent number: 6454866
    Abstract: A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: September 24, 2002
    Assignee: ASM America, Inc.
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs, Frank B. M. Van Bilsen, Matthew Goodman, Hartmann Glenn, Jason M. Layton
  • Patent number: 6343183
    Abstract: A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer.
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: January 29, 2002
    Assignee: ASM America, Inc.
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs, Frank B. M. Van Bilsen, Matthew Goodman, Hartmann Glenn, Jason M. Layton
  • Publication number: 20010054390
    Abstract: A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer.
    Type: Application
    Filed: August 17, 2001
    Publication date: December 27, 2001
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs, Frank B. M. Van Bilsen, Matthew Goodman, Hartmann Glenn, Jason M. Layton
  • Patent number: 6203622
    Abstract: A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support wafers in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The susceptor support arms are hollow and conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages within the segmented susceptor are arranged to provide even heat distribution from the sweep gas prior to delivery underneath the wafer.
    Type: Grant
    Filed: January 11, 2000
    Date of Patent: March 20, 2001
    Assignee: ASM America, Inc.
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs
  • Patent number: 6131061
    Abstract: A method and apparatus for preventing underdigging of a work machine, which may occur if the implement digs under or too close to the work machine, is disclosed. An underdigging boundary or a space of allowable implement movement is established relative to the work machine. The position of the implement is sensed, and the movement of the implement is controllably prevented from underdigging the work machine.
    Type: Grant
    Filed: July 7, 1997
    Date of Patent: October 10, 2000
    Assignee: Caterpillar Inc.
    Inventors: Lee R. DenBraber, John D. Duffy, Mark R. Hawkins, Steven J. Zmuda
  • Patent number: 6113702
    Abstract: A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer.
    Type: Grant
    Filed: September 4, 1997
    Date of Patent: September 5, 2000
    Assignee: ASM America, Inc.
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs, Frank B. M. Van Bilsen, Matthew Goodman, Hartmann Glenn, Jason M. Layton
  • Patent number: 6093252
    Abstract: An improved chemical vapor deposition reaction chamber having an internal support plate to enable reduced pressure processing. The chamber has a vertical-lateral lenticular cross-section with a wide horizontal dimension and a shorter vertical dimension between bi-convex upper and lower walls. A central horizontal support plate is provided between two lateral side rails of the chamber. A large rounded rectangular aperture is formed in the support plate for positioning a rotatable susceptor on which a wafer is placed. The shaft of the susceptor extends downward through the aperture and through a lower tube depending from the chamber. The support plate segregates the reaction chamber into an upper region and a lower region, with purge gas being introduced through the lower tube into the lower region to prevent unwanted deposition therein. A temperature compensation ring is provided surrounding the susceptor and supported by fingers connected to the support plate.
    Type: Grant
    Filed: April 25, 1996
    Date of Patent: July 25, 2000
    Assignee: ASM America, Inc.
    Inventors: John F. Wengert, Loren R. Jacobs, Michael W. Halpin, Derrick W. Foster, Cornelius A. van der Jeugd, Robert M. Vyne, Mark R. Hawkins
  • Patent number: 6053982
    Abstract: A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support wafers in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The susceptor support arms are hollow and conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages within the segmented susceptor are arranged to provide even heat distribution from the sweep gas prior to delivery underneath the wafer.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: April 25, 2000
    Assignee: ASM America, Inc.
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs
  • Patent number: 6032093
    Abstract: A method and apparatus for controllably preventing an implement from damaging a work machine or itself, which may occur if the implement strikes the work machine, by restricting the movement of the implement. A boundary is established a predetermined distance from the work machine. By controllably restricting the movement of the implement when it approaches the boundary, the implement is prevented from making contact with the work machine.
    Type: Grant
    Filed: July 17, 1996
    Date of Patent: February 29, 2000
    Assignee: Caterpillar Inc.
    Inventors: Lee R. Denbraber, Mark R. Hawkins, Ronald J. Penick, Steve J. Zmuda
  • Patent number: 5997588
    Abstract: A gas curtain for use with a semiconductor processing system to prevent unwanted gases from entering a processing chamber. The gas curtain includes both upward and downward flows of gas surrounding an isolation valve adjacent a delivery port into the processing chamber. In the valve open position, the downward flows extends between the valve and the delivery port, and the upward flow extends in an opposite direction behind the isolation valve. In the valve closed position, one of the flows extends through a slot in the isolation valve, while the other flow is directed in an opposite direction on the rear side of the isolation valve. In a method of using the gas curtain apparatus, a pick-up wand operating on a Bernoulli principal uses gases which are unwanted in the processing chamber, and just prior to loading wafers into the processing chamber, the gas flow in the Bernoulli wand is switched from a first gas to a second gas. Desirably, the second gas is hydrogen.
    Type: Grant
    Filed: October 11, 1996
    Date of Patent: December 7, 1999
    Assignee: Advanced Semiconductor Materials America, Inc.
    Inventors: Dennis L. Goodwin, Mark R. Hawkins, Richard Crabb, Allan D. Doley