Patents by Inventor Mark S. Wallace

Mark S. Wallace has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11171693
    Abstract: Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND?1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: November 9, 2021
    Assignee: QUALCOMM Incorporated
    Inventors: Jay Rodney Walton, Lizhong Zheng, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Publication number: 20200067575
    Abstract: Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND?1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 27, 2020
    Inventors: Jay Rodney WALTON, Lizhong ZHENG, John W. KETCHUM, Mark S. WALLACE, Steven J. HOWARD
  • Patent number: 10476560
    Abstract: Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND?1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: November 12, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Jay Rodney Walton, Lizhong Zheng, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 10128920
    Abstract: An uplink channel response matrix is obtained for each terminal and decomposed to obtain a steering vector used by the terminal to transmit on the uplink. An “effective” uplink channel response vector is formed for each terminal based on its steering vector and its channel response matrix. Multiple sets of terminals are evaluated based on their effective channel response vectors to determine the best set (e.g., with highest overall throughput) for uplink transmission. Each selected terminal performs spatial processing on its data symbol stream with its steering vector and transmits its spatially processed data symbol stream to an access point. The multiple selected terminals simultaneously transmit their data symbol streams via their respective MIMO channels to the access point. The access point performs receiver spatial processing on its received symbol streams in accordance with a receiver spatial processing technique to recover the data symbol streams transmitted by the selected terminals.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: November 13, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, John Edward Smee, Mark S. Wallace, Steven J. Howard
  • Publication number: 20180048362
    Abstract: Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND?1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
    Type: Application
    Filed: October 9, 2017
    Publication date: February 15, 2018
    Inventors: Jay Rodney Walton, Lizhong Zheng, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 9787375
    Abstract: Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND?1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: October 10, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Jay Rodney Walton, Lizhong Zheng, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 9755785
    Abstract: Techniques for detecting and demodulating a signal/transmission are described. Signal detection is performed in multiple stages using different types of signal processing, e.g., using time-domain correlation for a first stage, frequency-domain processing for a second stage, and time-domain processing for a third stage. For the first stage, products of symbols are generated for at least two different delays, correlation between the products for each delay and known values is performed, and correlation results for all delays are combined and used to declare the presence of a signal. For demodulation, the timing of input samples is adjusted to obtain timing-adjusted samples. A frequency offset is estimated and removed from the timing-adjusted samples to obtain frequency-corrected samples, which are processed with a channel estimate to obtain detected symbols. The phases of the detected symbols are corrected to obtain phase-corrected symbols, which are demodulated, deinterleaved, and decoded.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: September 5, 2017
    Assignee: QUALCOMM INCORPORATED
    Inventors: J. Rodney Walton, Mark S. Wallace
  • Publication number: 20170126290
    Abstract: An uplink channel response matrix is obtained for each terminal and decomposed to obtain a steering vector used by the terminal to transmit on the uplink. An “effective” uplink channel response vector is formed for each terminal based on its steering vector and its channel response matrix. Multiple sets of terminals are evaluated based on their effective channel response vectors to determine the best set (e.g., with highest overall throughput) for uplink transmission. Each selected terminal performs spatial processing on its data symbol stream with its steering vector and transmits its spatially processed data symbol stream to an access point. The multiple selected terminals simultaneously transmit their data symbol streams via their respective MIMO channels to the access point. The access point performs receiver spatial processing on its received symbol streams in accordance with a receiver spatial processing technique to recover the data symbol streams transmitted by the selected terminals.
    Type: Application
    Filed: January 13, 2017
    Publication date: May 4, 2017
    Applicant: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, John Edward Smee, Mark S. Wallace, Steven J. Howard
  • Patent number: 9548851
    Abstract: An uplink channel response matrix is obtained for each terminal and decomposed to obtain a steering vector used by the terminal to transmit on the uplink. An “effective” uplink channel response vector is formed for each terminal based on its steering vector and its channel response matrix. Multiple sets of terminals are evaluated based on their effective channel response vectors to determine the best set (e.g., with highest overall throughput) for uplink transmission. Each selected terminal performs spatial processing on its data symbol stream with its steering vector and transmits its spatially processed data symbol stream to an access point. The multiple selected terminals simultaneously transmit their data symbol streams via their respective MIMO channels to the access point. The access point performs receiver spatial processing on its received symbol streams in accordance with a receiver spatial processing technique to recover the data symbol streams transmitted by the selected terminals.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: January 17, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, John Edward Smee, Mark S. Wallace, Steven J. Howard
  • Publication number: 20160329936
    Abstract: Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND?1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
    Type: Application
    Filed: October 24, 2014
    Publication date: November 10, 2016
    Inventors: Jay Rodney Walton, Lizhong Zheng, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 9312935
    Abstract: Pilots suitable for use in MIMO systems and capable of supporting various functions are described. The various types of pilot include—a beacon pilot, a MIMO pilot, a steered reference or steered pilot, and a carrier pilot. The beacon pilot is transmitted from all transmit antennas and may be used for timing and frequency acquisition. The MIMO pilot is transmitted from all transmit antennas but is covered with different orthogonal codes assigned to the transmit antennas. The MIMO pilot may be used for channel estimation. The steered reference is transmitted on specific eigenmodes of a MIMO channel and is user terminal specific. The steered reference may be used for channel estimation. The carrier pilot may be transmitted on designated subbands/antennas and may be used for phase tracking of a carrier signal. Various pilot transmission schemes may be devised based on different combinations of these various types of pilot.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: April 12, 2016
    Assignee: Qualcomm Incorporated
    Inventors: John W. Ketchum, Mark S. Wallace, J. Rodney Walton, Steven J. Howard
  • Patent number: 9240871
    Abstract: A multiple-access MIMO WLAN system that employs MIMO, OFDM, and TDD. The system (1) uses a channel structure with a number of configurable transport channels, (2) supports multiple rates and transmission modes, which are configurable based on channel conditions and user terminal capabilities, (3) employs a pilot structure with several types of pilot (e.g., beacon, MIMO, steered reference, and carrier pilots) for different functions, (4) implements rate, timing, and power control loops for proper system operation, and (5) employs random access for system access by the user terminals, fast acknowledgment, and quick resource assignments. Calibration may be performed to account for differences in the frequency responses of transmit/receive chains at the access point and user terminals. The spatial processing may then be simplified by taking advantage of the reciprocal nature of the downlink and uplink and the calibration.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: January 19, 2016
    Assignee: Qualcomm Incorporated
    Inventors: J. Rodney Walton, Mark S. Wallace, John W. Ketchum, Steven J. Howard
  • Patent number: 9226308
    Abstract: Embodiments addressing MAC processing for efficient use of high throughput systems are disclosed. In one aspect, an apparatus comprises a first layer for receiving one or more packets from one or more data flows and for generating one or more first layer Protocol Data Units (PDUs) from the one or more packets. In another aspect, a second layer is deployed for generating one or more MAC frames based on the one or more MAC layer PDUs. In another aspect, a MAC frame is deployed for transmitting one or more MAC layer PDUs. The MAC frame may comprise a control channel for transmitting one or more allocations. The MAC frame may comprise one or more traffic segments in accordance with allocations.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: December 29, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: John W. Ketchum, Mark S. Wallace, Jay Rodney Walton, Sanjiv Nanda
  • Patent number: 9048892
    Abstract: A MIMO system supports multiple spatial multiplexing modes for improved performance and greater flexibility. These modes may include (1) a single-user steered mode that transmits multiple data streams on orthogonal spatial channels to a single receiver, (2) a single-user non-steered mode that transmits multiple data streams from multiple antennas to a single receiver without spatial processing at a transmitter, (3) a multi-user steered mode that transmits multiple data streams simultaneously to multiple receivers with spatial processing at a transmitter, and (4) a multi-user non-steered mode that transmits multiple data streams from multiple antennas (co-located or non co-located) without spatial processing at the transmitter(s) to receiver(s) having multiple antennas. For each set of user terminal(s) selected for data transmission on the downlink and/or uplink, a spatial multiplexing mode is selected for the user terminal set from among the multiple spatial multiplexing modes supported by the system.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: June 2, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 9031097
    Abstract: A MIMO system supports multiple spatial multiplexing modes for improved performance and greater flexibility. These modes may include (1) a single-user steered mode that transmits multiple data streams on orthogonal spatial channels to a single receiver, (2) a single-user non-steered mode that transmits multiple data streams from multiple antennas to a single receiver without spatial processing at a transmitter, (3) a multi-user steered mode that transmits multiple data streams simultaneously to multiple receivers with spatial processing at a transmitter, and (4) a multi-user non-steered mode that transmits multiple data streams from multiple antennas (co-located or non co-located) without spatial processing at the transmitter(s) to receiver(s) having multiple antennas. For each set of user terminal(s) selected for data transmission on the downlink and/or uplink, a spatial multiplexing mode is selected for the user terminal set from among the multiple spatial multiplexing modes supported by the system.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: May 12, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 9013974
    Abstract: A multiple-access MIMO WLAN system that employs MIMO, OFDM, and TDD. The system (1) uses a channel structure with a number of configurable transport channels, (2) supports multiple rates and transmission modes, which are configurable based on channel conditions and user terminal capabilities, (3) employs a pilot structure with several types of pilot (e.g., beacon, MIMO, steered reference, and carrier pilots) for different functions, (4) implements rate, timing, and power control loops for proper system operation, and (5) employs random access for system access by the user terminals, fast acknowledgment, and quick resource assignments. Calibration may be performed to account for differences in the frequency responses of transmit/receive chains at the access point and user terminals. The spatial processing may then be simplified by taking advantage of the reciprocal nature of the downlink and uplink and the calibration.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: April 21, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Jay Rodney Walton, Mark S. Wallace, John W. Ketchum, Steven J. Howard
  • Patent number: 8934329
    Abstract: For transmit diversity in a multi-antenna OFDM system, a transmitter encodes, interleaves, and symbol maps traffic data to obtain data symbols. The transmitter processes each pair of data symbols to obtain two pairs of transmit symbols for transmission from a pair of antennas either (1) in two OFDM symbol periods for space-time transmit diversity or (2) on two subbands for space-frequency transmit diversity. NT·(NT?1)/2 different antenna pairs are used for data transmission, with different antenna pairs being used for adjacent subbands, where NT is the number of antennas. The system may support multiple OFDM symbol sizes. The same coding, interleaving, and modulation schemes are used for different OFDM symbol sizes to simplify the transmitter and receiver processing. The transmitter performs OFDM modulation on the transmit symbol stream for each antenna in accordance with the selected OFDM symbol size. The receiver performs the complementary processing.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: January 13, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 8923446
    Abstract: Techniques for performing acquisition of packets are described. First detection values may be determined based on a first plurality of samples, e.g., by performing delay-multiply-integrate on the samples. Power values may be determined based on the first plurality of samples, e.g., by performing multiply-integrate on the samples. The first detection values may be averaged to obtain average detection values. The power values may also be averaged to obtain average power values. Whether a packet is presence may be determined based on the average detection values and the average power values. Second detection values may be determined based on a second plurality of samples. The start or the packet may be determined based on the first and second detection values. A third detection value may be determined based on a third plurality of samples. Frequency error of the packet may be estimated based on the first and third detection values.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: December 30, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Mark S. Wallace, John W. Ketchum, Jay Rodney Walton, Steven J. Howard
  • Patent number: 8923785
    Abstract: A transmitting entity performs spatial processing on data symbols for each subband with an eigenmode matrix, a steering matrix, or an identity matrix to obtain spatially processed symbols for the subband. The data symbols may be sent on orthogonal spatial channels with the eigenmode matrix, on different spatial channels with the steering matrix, or from different transmit antennas with the identity matrix. The transmitting entity further performs beamforming on the spatially processed symbols, in the frequency domain or time domain, prior to transmission from the multiple transmit antennas. A receiving entity performs the complementary processing to recover the data symbols sent by the transmitting entity. The receiving entity may derive a spatial filter matrix for each subband based on a MIMO channel response matrix for that subband and perform receiver spatial processing for the subband with the spatial filter matrix.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: December 30, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Steven J. Howard, Jay Rodney Walton, Mark S. Wallace
  • Patent number: 8913529
    Abstract: A multiple-access MIMO WLAN system that employs MIMO, OFDM, and TDD. The system (1) uses a channel structure with a number of configurable transport channels, (2) supports multiple rates and transmission modes, which are configurable based on channel conditions and user terminal capabilities, (3) employs a pilot structure with several types of pilot (e.g., beacon, MIMO, steered reference, and carrier pilots) for different functions, (4) implements rate, timing, and power control loops for proper system operation, and (5) employs random access for system access by the user terminals, fast acknowledgment, and quick resource assignments. Calibration may be performed to account for differences in the frequency responses of transmit/receive chains at the access point and user terminals. The spatial processing may then be simplified by taking advantage of the reciprocal nature of the downlink and uplink and the calibration.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: December 16, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, Mark S. Wallace, John W. Ketchum, Steven J. Howard