Patents by Inventor Mark S. Wallace

Mark S. Wallace has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8488565
    Abstract: A method for identifying a reference point in time in a wireless communication system includes: receiving a first repeated sequence of symbols; receiving a second repeated sequence of symbols; performing an autocorrelation between the first and second sequences of symbols; and identifying as the reference point in time an autocorrelation null between the first and second repeated sequences of symbols. Apparatus for identifying a reference point in time in a wireless communication system includes: means for receiving a first repeated sequence of symbols; means for receiving a second repeated sequence of symbols; means for performing an autocorrelation between the first and second sequences of symbols; and means for identifying as the reference point in time an autocorrelation null between the first and second repeated sequences of symbols. Other aspects, features, and embodiments are also claimed and described.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: July 16, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Mark S Wallace, Jay Rodney Walton, Irina Medvedev
  • Patent number: 8489107
    Abstract: Techniques to schedule downlink data transmission to a number of terminals in a wireless communication system. In one method, one or more sets of terminals are formed for possible data transmission, with each set including a unique combination of one or more terminals and corresponding to a hypothesis to be evaluated. One or more sub-hypotheses may further be formed for each hypothesis, with each sub-hypothesis corresponding to specific assignments of a number of transmit antennas to the one or more terminals in the hypothesis. The performance of each sub-hypothesis is then evaluated, and one of the evaluated sub-hypotheses is selected based on their performance. The terminal(s) in the selected sub-hypothesis are then scheduled for data transmission, and data is thereafter coded, modulated, and transmitted to each scheduled terminal from one or more transmit antennas assigned to the terminal.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: July 16, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, Mark S. Wallace, Steven J. Howard
  • Patent number: 8483188
    Abstract: A MIMO system supports multiple spatial multiplexing modes for improved performance and greater flexibility. These modes may include (1) a single-user steered mode that transmits multiple data streams on orthogonal spatial channels to a single receiver, (2) a single-user non-steered mode that transmits multiple data streams from multiple antennas to a single receiver without spatial processing at a transmitter, (3) a multi-user steered mode that transmits multiple data streams simultaneously to multiple receivers with spatial processing at a transmitter, and (4) a multi-user non-steered mode that transmits multiple data streams from multiple antennas (co-located or non co-located) without spatial processing at the transmitter(s) to receiver(s) having multiple antennas. For each set of user terminal(s) selected for data transmission on the downlink and/or uplink, a spatial multiplexing mode is selected for the user terminal set from among the multiple spatial multiplexing modes supported by the system.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: July 9, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 8477858
    Abstract: Techniques to process data for transmission over a set of transmission channels selected from among all available transmission channels. In an aspect, the data processing includes coding data based on a common coding and modulation scheme to provide modulation symbols and pre-weighting the modulation symbols for each selected channel based on the channel's characteristics. The pre-weighting may be achieved by “inverting” the selected channels so that the received SNRs are approximately similar for all selected channels. With selective channel inversion, only channels having SNRs at or above a particular threshold are selected, “bad” channels are not used, and the total available transmit power is distributed across only “good” channels. Improved performance is achieved due to the combined benefits of using only the NS best channels and matching the received SNR of each selected channel to the SNR required by the selected coding and modulation scheme.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: July 2, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: John W. Ketchum, Steven J. Howard, Jay Rod Walton, Mark S. Wallace, Fuyun Ling
  • Patent number: 8477891
    Abstract: Techniques for deriving and using noise estimate for data reception in a wireless communication system are described. A noise estimate may be derived for each packet received in a data transmission. The noise estimate may be derived by determining a phase offset between a first and second sample sequence, applying the phase offset to the first sample sequence to obtain a third sample sequence, and deriving the noise estimate based on the second and third sample sequences. Data detection may then be performed for each packet using the noise estimate for that packet. At least one weight may be derived for each packet using the noise estimate for the packet. Data detection is then performed for each packet with the at least one weight for the packet.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: July 2, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Mark S. Wallace, Peter Monsen
  • Patent number: 8467466
    Abstract: Techniques for performing detection and decoding at a receiver are described. In one scheme, the receiver obtains R received symbol streams for M data streams transmitted by a transmitter, performs receiver spatial processing on the received symbols to obtain detected symbols, performs log-likelihood ratio (LLR) computation independently for each of D best data streams, and performs LLR computation jointly for the M?D remaining data streams, where M>D?1 and M>1. The D best data streams may be selected based on SNR and/or other criteria. In another scheme, the receiver performs LLR computation independently for each of the D best data streams, performs LLR computation jointly for the M?D remaining data streams, and reduces the number of hypotheses to consider for the joint LLR computation by performing a search for candidate hypotheses using list sphere detection, Markov chain Monte Carlo, or some other search technique.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: June 18, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Bjorn Bjerke, Irina Medvedev, John W. Ketchum, Mark S. Wallace, Jay Rodney Walton
  • Patent number: 8462643
    Abstract: A multiple-access MIMO WLAN system that employs MIMO, OFDM, and TDD. The system (1) uses a channel structure with a number of configurable transport channels, (2) supports multiple rates and transmission modes, which are configurable based on channel conditions and user terminal capabilities, (3) employs a pilot structure with several types of pilot (e.g., beacon, MIMO, steered reference, and carrier pilots) for different functions, (4) implements rate, timing, and power control loops for proper system operation, and (5) employs random access for system access by the user terminals, fast acknowledgment, and quick resource assignments. Calibration may be performed to account for differences in the frequency responses of transmit/receive chains at the access point and user terminals. The spatial processing may then be simplified by taking advantage of the reciprocal nature of the downlink and uplink and the calibration.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: June 11, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, Mark S. Wallace, John W. Ketchum, Steven J. Howard
  • Patent number: 8406200
    Abstract: Techniques to schedule terminals for data transmission on the downlink and/or uplink in a MIMO-OFDM system based on the spatial and/or frequency “signatures” of the terminals. A scheduler forms one or more sets of terminals for possible (downlink or uplink) data transmission for each of a number of frequency bands. One or more sub-hypotheses may further be formed for each hypothesis, with each sub-hypothesis corresponding to (1) specific assignments of transmit antennas to the terminal(s) in the hypothesis (for the downlink) or (2) a specific order for processing the uplink data transmissions from the terminal(s) (for the uplink). The performance of each sub-hypothesis is then evaluated (e.g., based on one or more performance metrics). One sub-hypothesis is then selected for each frequency band based on the evaluated performance, and the one or more terminals in each selected sub-hypothesis are then scheduled for data transmission on the corresponding frequency band.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: March 26, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, Mark S. Wallace, Irina Medvedev
  • Patent number: 8355313
    Abstract: A MIMO system supports multiple spatial multiplexing modes for improved performance and greater flexibility. These modes may include (1) a single-user steered mode that transmits multiple data streams on orthogonal spatial channels to a single receiver, (2) a single-user non-steered mode that transmits multiple data streams from multiple antennas to a single receiver without spatial processing at a transmitter, (3) a multi-user steered mode that transmits multiple data streams simultaneously to multiple receivers with spatial processing at a transmitter, and (4) a multi-user non-steered mode that transmits multiple data streams from multiple antennas (co-located or non co-located) without spatial processing at the transmitter(s) to receiver(s) having multiple antennas. For each set of user terminal(s) selected for data transmission on the downlink and/or uplink, a spatial multiplexing mode is selected for the user terminal set from among the multiple spatial multiplexing modes supported by the system.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: January 15, 2013
    Assignee: Qualcomm Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 8325844
    Abstract: For data transmission with spatial spreading, a transmitting entity (1) encodes and modulates each data packet to obtain a corresponding data symbol block, (2) multiplexes data symbol blocks onto NS data symbol streams for transmission on NS transmission channels of a MIMO channel, (3) spatially spreads the NS data symbol streams with steering matrices, and (4) spatially processes NS spread symbol streams for full-CSI transmission on NS eigenmodes or partial-CSI transmission on NS spatial channels of the MIMO channel. A receiving entity (1) obtains NR received symbol streams via NR receive antennas, (2) performs receiver spatial processing for full-CSI or partial-CSI transmission to obtain NS detected symbol streams, (3) spatially despreads the NS detected symbol streams with the same steering matrices used by the transmitting entity to obtain NS recovered symbol streams, and (4) demodulates and decodes each recovered symbol block to obtain a corresponding decoded data packet.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: December 4, 2012
    Assignee: Qualcomm Incorporated
    Inventors: Jay Rodney Walton, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 8320301
    Abstract: A multiple-access MIMO WLAN system that employs MIMO, OFDM, and TDD. The system (1) uses a channel structure with a number of configurable transport channels, (2) supports multiple rates and transmission modes, which are configurable based on channel conditions and user terminal capabilities, (3) employs a pilot structure with several types of pilot (e.g., beacon, MIMO, steered reference, and carrier pilots) for different functions, (4) implements rate, timing, and power control loops for proper system operation, and (5) employs random access for system access by the user terminals, fast acknowledgment, and quick resource assignments. Calibration may be performed to account for differences in the frequency responses of transmit/receive chains at the access point and user terminals. The spatial processing may then be simplified by taking advantage of the reciprocal nature of the downlink and uplink and the calibration.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: November 27, 2012
    Assignee: Qualcomm Incorporated
    Inventors: J. Rodney Walton, Mark S. Wallace, John W. Ketchum, Steven J. Howard
  • Patent number: 8290089
    Abstract: Techniques for efficiently deriving a transmit steering matrix and sending feedback for this matrix are described. A receiver determines a set of parameters defining a transmit steering matrix to be used for transmission from a transmitter to the receiver. The receiver may derive the transmit steering matrix based on a set of transformation matrices, which may be used for multiple iterations of Jacobi rotation to zero out off-diagonal elements of a channel matrix. The receiver may then determine the set of parameters based on the transformation matrices. The set of parameters may comprise at least one angle, at least one value, at least one index, etc., for each transformation matrix. The receiver sends the set of parameters defining the transmit steering matrix (instead of elements of the transmit steering matrix) to the transmitter for use by the transmitter to derive the transmit steering matrix.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: October 16, 2012
    Assignee: Qualcomm Incorporated
    Inventors: Steven J. Howard, John W. Ketchum, Mark S. Wallace, J. Rodney Walton
  • Patent number: 8284752
    Abstract: Embodiments addressing MAC processing for efficient use of high throughput systems are disclosed. In one aspect, an apparatus comprises a first layer for receiving one or more packets from one or more data flows and for generating one or more first layer Protocol Data Units (PDUs) from the one or more packets. In another aspect, a second layer is deployed for generating one or more MAC frames based on the one or more MAC layer PDUs. In another aspect, a MAC frame is deployed for transmitting one or more MAC layer PDUs. The MAC frame may comprise a control channel for transmitting one or more allocations. The MAC frame may comprise one or more traffic segments in accordance with allocations.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: October 9, 2012
    Assignee: Qualcomm Incorporated
    Inventors: John W. Ketchum, Mark S. Wallace, Jay Rodney Walton, Sanjiv Nanda
  • Publication number: 20120250788
    Abstract: Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND?1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
    Type: Application
    Filed: June 18, 2012
    Publication date: October 4, 2012
    Applicant: QUALCOMM INCORPORATED
    Inventors: Jay Rodney Walton, Lizhong Zheng, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 8265208
    Abstract: Techniques for detecting and demodulating a signal/transmission are described. Signal detection is performed in multiple stages using different types of signal processing, e.g., using time-domain correlation for a first stage, frequency-domain processing for a second stage, and time-domain processing for a third stage. For the first stage, products of symbols are generated for at least two different delays, correlation between the products for each delay and known values is performed, and correlation results for all delays are combined and used to declare the presence of a signal. For demodulation, the timing of input samples is adjusted to obtain timing-adjusted samples. A frequency offset is estimated and removed from the timing-adjusted samples to obtain frequency-corrected samples, which are processed with a channel estimate to obtain detected symbols. The phases of the detected symbols are corrected to obtain phase-corrected symbols, which are demodulated, deinterleaved, and decoded.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: September 11, 2012
    Assignee: Qualcomm Incorporated
    Inventors: J. Rodney Walton, Mark S. Wallace
  • Publication number: 20120213181
    Abstract: A multi-antenna transmitting entity transmits data to a single- or multi-antenna receiving entity using (1) a steered mode to direct the data transmission toward the receiving entity or (2) a pseudo-random transmit steering (PRTS) mode to randomize the effective channels observed by the data transmission across the subbands. For transmit diversity, the transmitting entity uses different pseudo-random steering vectors across the subbands but the same steering vector across a packet for each subband. The receiving entity does not need to have knowledge of the pseudo-random steering vectors or perform any special processing. For spatial spreading, the transmitting entity uses different pseudo-random steering vectors across the subbands and different steering vectors across the packet for each subband. Only the transmitting and receiving entities know the steering vectors used for data transmission. Other aspects, embodiments, and features are also claimed and disclosed.
    Type: Application
    Filed: May 1, 2012
    Publication date: August 23, 2012
    Inventors: J. Rodney Walton, John W. Ketchum, Mark S. Wallace, Steven J. Howard, Sanjiv Nanda
  • Publication number: 20120213302
    Abstract: An uplink channel response matrix is obtained for each terminal and decomposed to obtain a steering vector used by the terminal to transmit on the uplink. An “effective” uplink channel response vector is formed for each terminal based on its steering vector and its channel response matrix. Multiple sets of terminals are evaluated based on their effective channel response vectors to determine the best set (e.g., with highest overall throughput) for uplink transmission. Each selected terminal performs spatial processing on its data symbol stream with its steering vector and transmits its spatially processed data symbol stream to an access point. The multiple selected terminals simultaneously transmit their data symbol streams via their respective MIMO channels to the access point. The access point performs receiver spatial processing on its received symbol streams in accordance with a receiver spatial processing technique to recover the data symbol streams transmitted by the selected terminals.
    Type: Application
    Filed: October 9, 2007
    Publication date: August 23, 2012
    Applicant: QUALCOMM INCORPORATED
    Inventors: J. Rodney Walton, John W. Ketchum, John Edward Smee, Mark S. Wallace, Steven J. Howard
  • Patent number: 8248978
    Abstract: Techniques for detecting other stations in a power efficient manner are described. A station may operate in a passive mode or a search mode. In the passive mode, the station receives for one receive period in each time interval. In the search mode, the station transmits for a series of transmit periods in one time interval, then receives for one receive period in the next time interval, and repeats the transmit/receive cycle. In an example scenario, station A operates in the search mode and sends a series of transmissions during its transmit periods. Station B operates in the passive mode, receives a transmission from station A during its receive period, switches to the search mode, and sends a series of transmissions for one time interval. Station A receives a transmission from station B during its receive period. After detecting one another, stations A and B may perform synchronization.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: August 21, 2012
    Assignee: Qualcomm Incorporated
    Inventors: Xiandong Zhang, Mark S. Wallace, J. Rodney Walton
  • Publication number: 20120176928
    Abstract: Techniques to calibrate downlink and uplink channels to account for differences in the frequency responses of transmit and receive chains are described. In one embodiment, pilots are transmitted on downlink and uplink channels and used to derive estimates of the downlink and uplink channel responses, respectively. Sets of correction factors are then determined based on estimates of downlink and uplink channel responses. A calibrated downlink channel is formed using a first set of correction factors for the downlink channel, and a calibrated uplink channel is formed using a second set of correction factors for the uplink channel. The first and second sets of correction factors may be determined using a matrix-ratio computation or a minimum mean square error computation. The calibration may be performed in real-time based on over-the-air transmission. Other aspects, embodiments, and features are also claimed and described.
    Type: Application
    Filed: March 13, 2012
    Publication date: July 12, 2012
    Applicant: QUALCOMM Incorporated
    Inventors: Mark S. Wallace, John W. Ketchum, J. Rodney Walton, Steven J. Howard
  • Patent number: 8218609
    Abstract: Closed-loop rate control for data transmission on multiple parallel channels is provided. An inner loop estimates the channel conditions for a communication link and selects a suitable data rate for each of the multiple parallel channels based on the channel estimates. For each parallel channel, a received SNR is computed based on the channel estimates, an operating SNR is computed based on the received SNR and an SNR offset for the parallel channel, and the data rate is selected based on the operating SNR for the parallel channel and a set of required SNRs for a set of data rates supported by the system. An outer loop estimates the quality of data transmissions received on the multiple parallel channels and adjusts the operation of the inner loop. For example, the SNR offset for each parallel channel is adjusted based on the status of packets received on that parallel channel.
    Type: Grant
    Filed: May 31, 2003
    Date of Patent: July 10, 2012
    Assignee: Qualcomm Incorporated
    Inventors: Jay Rodney Walton, Mark S. Wallace, John W. Ketchum, Steven J. Howard