Patents by Inventor Markus Lutz

Markus Lutz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8018077
    Abstract: There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a technique of fabricating or manufacturing MEMS having mechanical structures that operate in controlled or predetermined mechanical damping environments. In this regard, the present invention encapsulates the mechanical structures within a chamber, prior to final packaging and/or completion of the MEMS. The environment within the chamber containing and/or housing the mechanical structures provides the predetermined, desired and/or selected mechanical damping. The parameters of the encapsulated fluid (for example, the gas pressure) in which the mechanical structures are to operate are controlled, selected and/or designed to provide a desired and/or predetermined operating environment.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: September 13, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Aaron Partridge, Markus Lutz, Silvia Kronmueller
  • Publication number: 20110199167
    Abstract: Each one of resonators arranged in an N×M MEMS array structure includes substantially straight elongated beam sections connected by curved/rounded sections and is mechanically coupled to at least one adjacent resonator of the array via a coupling section, each elongated beam section connected to another elongated beam section at a distal end via the curved/rounded sections forming a geometric shape (e.g., a rounded square), and the coupling sections disposed between elongated beam sections of adjacent resonators. The resonators, when induced, oscillate at substantially the same frequency, in combined elongating/breathing and bending modes, i.e., beam sections exhibiting elongating/breathing-like and bending-like motions. One or more of the array structure's resonators may include one or more nodal points (i.e.
    Type: Application
    Filed: March 4, 2011
    Publication date: August 18, 2011
    Inventors: Markus LUTZ, Zhiyu PAN, Aaron PARTRIDGE
  • Publication number: 20110165718
    Abstract: There are many inventions described and illustrated herein. In one aspect, present invention is directed to a thin film encapsulated MEMS, and technique of fabricating or manufacturing a thin film encapsulated MEMS including an integrated getter area and/or an increased chamber volume, which causes little to no increase in overall dimension(s) from the perspective of the mechanical structure and chamber. The integrated getter area is disposed within the chamber and is capable of (i) “capturing” impurities, atoms and/or molecules that are out-gassed from surrounding materials and/or (ii) reducing and/or minimizing the adverse impact of such impurities, atoms and/or molecules (for example, reducing the probability of adding mass to a resonator which would thereby change the resonator's frequency).
    Type: Application
    Filed: March 17, 2011
    Publication date: July 7, 2011
    Inventors: Markus Lutz, Aaron Partridge
  • Patent number: 7923278
    Abstract: There are many inventions described and illustrated herein. In one aspect, present invention is directed to a thin film encapsulated MEMS, and technique of fabricating or manufacturing a thin film encapsulated MEMS including an integrated getter area and/or an increased chamber volume, which causes little to no increase in overall dimension(s) from the perspective of the mechanical structure and chamber. The integrated getter area is disposed within the chamber and is capable of (i) “capturing” impurities, atoms and/or molecules that are out-gassed from surrounding materials and/or (ii) reducing and/or minimizing the adverse impact of such impurities, atoms and/or molecules (for example, reducing the probability of adding mass to a resonator which would thereby change the resonator's frequency).
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: April 12, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Markus Lutz, Aaron Partridge
  • Patent number: 7907035
    Abstract: A MEMS array structure including a plurality of bulk mode resonators may include at least one resonator coupling section disposed between the plurality of bulk mode resonators. The plurality of resonators may oscillate by expansion and/or contraction in at least one direction/dimension. The MEMS array structure may include a plurality of sense electrodes and drive electrodes spaced apart from the plurality of bulk mode resonators by a gap. The MEMS array structure may further include at least one anchor coupling section disposed between the at least one resonator coupling section and a substrate anchor.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: March 15, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Markus Lutz, Zhiyu Pan, Aaron Partridge
  • Patent number: 7907027
    Abstract: Example embodiments of the present invention are directed to a compensated microelectromechanical oscillator, having a microelectromechanical resonator that generates an output signal and frequency adjustment circuitry, coupled to the microelectromechanical resonator to receive the output signal of the microelectromechanical resonator and, in response to a set of values, to generate an output signal having second frequency. The values may be determined using the frequency of the output signal of the microelectromechanical resonator, which depends on the operating temperature of the microelectromechanical resonator and/or manufacturing variations of the microelectromechanical resonator. The frequency adjustment circuitry may include frequency multiplier circuitry, for example, PLLs, DLLs, digital/frequency synthesizers and/or FLLs, as well as any combinations and permutations thereof.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: March 15, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Aaron Partridge, Markus Lutz
  • Publication number: 20110033967
    Abstract: Many inventions are disclosed. Some aspects are directed to MEMS, and/or methods for use with and/or for fabricating MEMS, that supply, store, and/or trap charge on a mechanical structure disposed in a chamber. Various structures may be disposed in the chamber and employed in supplying, storing and/or trapping charge on the mechanical structure. In some aspects, a breakable link, a thermionic electron source and/or a movable mechanical structure are employed. The breakable link may comprise a fuse. In one embodiment, the movable mechanical structure is driven to resonate. In some aspects, the electrical charge enables a transducer to convert vibrational energy to electrical energy, which may be used to power circuit(s), device(s) and/or other purpose(s). In some aspects, the electrical charge is employed in changing the resonant frequency of a mechanical structure and/or generating an electrostatic force, which may be repulsive.
    Type: Application
    Filed: October 20, 2010
    Publication date: February 10, 2011
    Inventors: Markus LUTZ, Aaron Partridge, Brian H. Stark
  • Publication number: 20110018655
    Abstract: A microelectromechanical resonator may include one or more resonator masses that oscillates in a bulk mode and that includes a first plurality of regions each having a density, and a second plurality of regions each having a density, the density of each of the second plurality of regions differing from the density of each of the first plurality of regions. The second plurality of regions may be disposed in a non-uniform arrangement. The oscillation may include a first state in which the resonator mass is contracted, at least in part, in a first and/or a second direction, and expanded, at least in part, in a third and/or a fourth direction, the second direction being opposite the first direction, the fourth direction being opposite the third direction.
    Type: Application
    Filed: July 21, 2010
    Publication date: January 27, 2011
    Inventors: Markus Lutz, Zhiyu Pan, Aaron Partridge
  • Patent number: 7859067
    Abstract: There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures encapsulated in a chamber prior to final packaging. The material that encapsulates the mechanical structures, when deposited, includes one or more of the following attributes: low tensile stress, good step coverage, maintains its integrity when subjected to subsequent processing, does not significantly and/or adversely impact the performance characteristics of the mechanical structures in the chamber (if coated with the material during deposition), and/or facilitates integration with high-performance integrated circuits. In one embodiment, the material that encapsulates the mechanical structures is, for example, silicon (polycrystalline, amorphous or porous, whether doped or undoped), silicon carbide, silicon-germanium, germanium, or gallium-arsenide.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: December 28, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Aaron Partridge, Markus Lutz, Silvia Kronmueller
  • Patent number: 7824943
    Abstract: Many inventions are disclosed. Some aspects are directed to MEMS, and/or methods for use with and/or for fabricating MEMS, that supply, store, and/or trap charge on a mechanical structure disposed in a chamber. Various structures may be disposed in the chamber and employed in supplying, storing and/or trapping charge on the mechanical structure. In some aspects, a breakable link, a thermionic electron source and/or a movable mechanical structure are employed. The breakable link may comprise a fuse. In one embodiment, the movable mechanical structure is driven to resonate. In some aspects, the electrical charge enables a transducer to convert vibrational energy to electrical energy, which may be used to power circuit(s), device(s) and/or other purpose(s). In some aspects, the electrical charge is employed in changing the resonant frequency of a mechanical structure and/or generating an electrostatic force, which may be repulsive.
    Type: Grant
    Filed: June 4, 2006
    Date of Patent: November 2, 2010
    Assignee: Akustica, Inc.
    Inventors: Markus Lutz, Aaron Partridge, Brian H. Stark
  • Patent number: 7777596
    Abstract: A microelectromechanical resonator may include one or more resonator masses that oscillates in a bulk mode and that includes a first plurality of regions each having a density, and a second plurality of regions each having a density, the density of each of the second plurality of regions differing from the density of each of the first plurality of regions. The second plurality of regions may be disposed in a non-uniform arrangement. The oscillation may include a first state in which the resonator mass is contracted, at least in part, in a first and/or a second direction, and expanded, at least in part, in a third and/or a fourth direction, the second direction being opposite the first direction, the fourth direction being opposite the third direction.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: August 17, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Markus Lutz, Zhiyu Pan, Aaron Partridge
  • Patent number: 7767482
    Abstract: Many inventions are disclosed. Some aspects are directed to MEMS, and/or methods for use with and/or for fabricating MEMS, that supply, store, and/or trap charge on a mechanical structure disposed in a chamber. Various structures may be disposed in the chamber and employed in supplying, storing and/or trapping charge on the mechanical structure. In some aspects, a breakable link, a thermionic electron source and/or a movable mechanical structure are employed. The breakable link may comprise a fuse. In one embodiment, the movable mechanical structure is driven to resonate. In some aspects, the electrical charge enables a transducer to convert vibrational energy to electrical energy, which may be used to power circuit(s), device(s) and/or other purpose(s). In some aspects, the electrical charge is employed in changing the resonant frequency of a mechanical structure and/or generating an electrostatic force, which may be repulsive.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: August 3, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Brian H. Stark, Markus Lutz, Aaron Partridge
  • Publication number: 20100190285
    Abstract: Many inventions are disclosed. Some aspects are directed to MEMS, and/or methods for use with and/or for fabricating MEMS, that supply, store, and/or trap charge on a mechanical structure disposed in a chamber. Various structures may be disposed in the chamber and employed in supplying, storing and/or trapping charge on the mechanical structure. In some aspects, a breakable link, a thermionic electron source and/or a movable mechanical structure are employed. The breakable link may comprise a fuse. In one embodiment, the movable mechanical structure is driven to resonate. In some aspects, the electrical charge enables a transducer to convert vibrational energy to electrical energy, which may be used to power circuit(s), device(s) and/or other purpose(s). In some aspects, the electrical charge is employed in changing the resonant frequency of a mechanical structure and/or generating an electrostatic force, which may be repulsive.
    Type: Application
    Filed: November 12, 2008
    Publication date: July 29, 2010
    Inventors: Brian H. Stark, Markus Lutz, Aaron Partridge
  • Patent number: 7750758
    Abstract: A system and method are provided which includes ring resonator structures coupled together with beam structure(s). The ring resonators are configured to operate in the contour or breathe mode. The center of the coupling beam structure is used as a nodal anchor point for anchoring the ring resonators and the beam structures, and also provides a reflecting interface. In an embodiment, the coupling beam structure includes two quarter-wavelength matched beams and an anchor located at a nodal point for coupling the two quarter-wavelength matched beams and ring resonator structures. The symmetric ring design also provides a differential drive and sense configuration while balancing the driving forces about the anchor located at the center of the beam structure. The system exhibits low energy losses while providing large sensing signals and a high quality factor (Q) of about 186,000 at a resonant frequency of about twenty-nine (29) MHz.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: July 6, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Pan Zhiyu, Robert Candler, Markus Lutz, Aaron Partridge, Gary Yama
  • Publication number: 20100159627
    Abstract: A silicon oxide layer is formed by oxidation or decomposition of a silicon precursor gas in an oxygen-rich environment followed by annealing. The silicon oxide layer may be formed with slightly compressive stress to yield, following annealing, an oxide layer having very low stress. The silicon oxide layer thus formed is readily etched without resulting residue using HF-vapor.
    Type: Application
    Filed: October 14, 2009
    Publication date: June 24, 2010
    Inventors: Aaron Partridge, Markus Lutz, Silvia Kronmueller
  • Patent number: 7678193
    Abstract: The invention relates to the use of lithium glycerophosphate for treating structures made of a cement-based product and having steel rebars, making it possible to inhibit rebar corrosion, to prevent the alkali reaction and to avoid the presence of alkalis and sulfates in the structure.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: March 16, 2010
    Assignee: Arts Technology S.A.
    Inventors: Theophil Markus Lutz, Christian Chevret
  • Publication number: 20090309175
    Abstract: There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a technique of fabricating or manufacturing MEMS having mechanical structures that operate in controlled or predetermined mechanical damping environments. In this regard, the present invention encapsulates the mechanical structures within a chamber, prior to final packaging and/or completion of the MEMS. The environment within the chamber containing and/or housing the mechanical structures provides the predetermined, desired and/or selected mechanical damping. The parameters of the encapsulated fluid (for example, the gas pressure) in which the mechanical structures are to operate are controlled, selected and/or designed to provide a desired and/or predetermined operating environment.
    Type: Application
    Filed: March 13, 2009
    Publication date: December 17, 2009
    Inventors: Aaron Partridge, Markus Lutz, Silvia Kronmueller
  • Patent number: 7629657
    Abstract: A method for making a pressure sensor by providing a wafer including a base silicon layer, a buried sacrificial layer, and a top silicon layer. The top silicon layer is arranged over the buried sacrificial layer and the buried sacrificial layer is arranged over the base silicon layer. Etching vents through the top silicon layer to the buried sacrificial layer and removing a portion of the buried sacrificial layer. Depositing silicon to seal the vents and arranging a strain gauge or a capacitance contact on the wafer. A method for making a pressure sensor including providing a bulk wafer and depositing a sacrificial layer on the bulk wafer. Depositing silicon on the sacrificial layer and the bulk wafer to form an encapsulation layer. Etching vents through the encapsulation layer to the sacrificial layer and removing the sacrificial layer. Closing the vents with a silicon deposition and arranging a strain gauge or a capacitance contact on the encapsulation layer.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: December 8, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Aaron Partridge, Markus Lutz
  • Patent number: 7625773
    Abstract: A mechanical structure is disposed in a chamber, at least a portion of which is defined by the encapsulation structure. A first method provides a channel cap having at least one preform portion disposed over or in at least a portion of an anti-stiction channel to seal the anti-stiction channel, at least in part. A second method provides a channel cap having at least one portion disposed over or in at least a portion of an anti-stiction channel to seal the anti-stiction channel, at least in part. The at least one portion is fabricated apart from the electromechanical device and thereafter affixed to the electromechanical device. A third method provides a channel cap having at least one portion disposed over or in at least a portion of the anti-stiction channel to seal an anti-stiction channel, at least in part. The at least one portion may comprise a wire ball, a stud, metal foil or a solder preform. A device includes a substrate, an encapsulation structure and a mechanical structure.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: December 1, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Markus Lutz, Aaron Partridge, Wilhelm Frey, Markus Ulm, Matthias Metz, Brian Stark, Gary Yama
  • Patent number: 7625603
    Abstract: A silicon oxide layer is formed by oxidation or decomposition of a silicon precursor gas in an oxygen-rich environment followed by annealing. The silicon oxide layer may be formed with slightly compressive stress to yield, following annealing, an oxide layer having very low stress. The silicon oxide layer thus formed is readily etched without resulting residue using HF-vapor.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: December 1, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Aaron Partridge, Markus Lutz, Silvia Kronmueller