Patents by Inventor Markus Paule

Markus Paule has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9644521
    Abstract: A method for operating an exhaust gas purification system of a motor vehicle internal combustion engine is disclosed. The system has an SCR catalyst where a reducing agent containing ammonia is metered into the exhaust gas at a predeterminable metering rate which is produced from a base value and an adaptation factor which corrects the base value. A test procedure checks and, if appropriate, adjusts the adaptation factor where a first nitrogen oxide value is compared with a second nitrogen oxide value of the exhaust gas, where the first and the second nitrogen oxide value are determined by the same nitrogen oxide sensor disposed downstream of the SCR catalyst. The first nitrogen oxide value is determined when the metering of the reducing agent is switched off and the second nitrogen oxide value is determined when the reducing agent is metered at a test metering rate which can be predetermined.
    Type: Grant
    Filed: March 15, 2014
    Date of Patent: May 9, 2017
    Assignee: Daimler AG
    Inventors: Rainer Hegemann, Eugen Neuberger, Markus Paule, Norbert Waldbuesser
  • Patent number: 9353664
    Abstract: In a system with an SCR catalytic converter, a correction by a changeable long term adaption factor to a target dosing rate is provided for the model dosing rate and a correction by a changeable short term adaption factor to an assumed actual filling state for the ammonia filling level value. A dosing unit controllable by a control unit adds an ammonia-containing reducing agent to the exhaust gas and an exhaust gas enriched with ammonia according to the dosing is fed to the SCR catalytic converter. An ammonia filling level value for a filling level of ammonia stored in the SCR catalytic converter and a model dosing rate for dosing the reducing agent into the exhaust gas are calculated by a computer model.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: May 31, 2016
    Assignee: Daimler AG
    Inventors: Bernd Christner, Uwe Hofmann, Alexander Kaiser, Markus Paule
  • Publication number: 20160069243
    Abstract: A method for operating an exhaust gas purification system of a motor vehicle internal combustion engine is disclosed. The system has an SCR catalyst where a reducing agent containing ammonia is metered into the exhaust gas at a predeterminable metering rate which is produced from a base value and an adaptation factor which corrects the base value. A test procedure checks and, if appropriate, adjusts the adaptation factor where a first nitrogen oxide value is compared with a second nitrogen oxide value of the exhaust gas, where the first and the second nitrogen oxide value are determined by the same nitrogen oxide sensor disposed downstream of the SCR catalyst. The first nitrogen oxide value is determined when the metering of the reducing agent is switched off and the second nitrogen oxide value is determined when the reducing agent is metered at a test metering rate which can be predetermined.
    Type: Application
    Filed: March 15, 2014
    Publication date: March 10, 2016
    Applicant: Daimler AG
    Inventors: Rainer HEGEMANN, Eugen NEUBERGER, Markus PAULE, Norbert WALDBUESSER
  • Publication number: 20150226100
    Abstract: An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.
    Type: Application
    Filed: April 24, 2015
    Publication date: August 13, 2015
    Inventors: Brigitte BANDL-KONRAD, Andreas HERTZBERG, Bernd KRUTZSCH, Arno NOLTE, Markus PAULE, Stefan RENFFTLEN, Norbert WALDBUESSER, Michel WEIBEL, Guenther WENNINGER, Rolf WUNSCH
  • Patent number: 9057307
    Abstract: An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 16, 2015
    Assignee: Daimler AG
    Inventors: Brigitte Bandl-Konrad, Andreas Hertzberg, Bernd Krutzsch, Arno Nolte, Markus Paule, Stefan Renfftlen, Norbert Waldbuesser, Michel Weibel, Guenter Wenninger, Rolf Wunsch
  • Patent number: 8978362
    Abstract: A method for operating an exhaust gas treatment system that includes an SCR catalytic converter is provided. Either a model-based filling level regulation for achieving the target filling level or a model-based efficiency control for achieving the target efficiency is performed according to presettable values for certain operating variables such as a temperature of the exhaust gas or of the SCR catalytic converter.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: March 17, 2015
    Assignee: Daimler AG
    Inventors: Bernd Christner, Markus Paule
  • Patent number: 8806851
    Abstract: In a method for reducing the emission of nitrogen dioxide in a motor vehicle having an exhaust gas purification system having an SCR catalytic converter with adsorption centers for nitrogen oxides, an exhaust gas enriched with ammonia is supplied to the SCR catalytic converter above an operating temperature. Below the operating temperature, the exhaust gas supplied to the SCR catalytic converter is enriched with a material such that an adsorption of nitrogen oxides is inhibited at corresponding adsorption centers of the SCR catalytic converter. In order to reduce the overall NOx emissions below a first, predeterminable amount, an exhaust gas enriched with ammonia is supplied to the SCR catalytic converter and the NO2 portion of the total NOx emissions is reduced below a second, predeterminable amount in that NO2 is converted with hydrocarbons stored in the SCR catalytic converter.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: August 19, 2014
    Assignee: Daimler AG
    Inventors: Cyrill Kammer, Berthold Keppeler, Jochen Lahr, Markus Paule, Anke Traebert, Nicole Werquet, Axel Zuschlag
  • Patent number: 8763366
    Abstract: In a method for operating an air-compressing fuel-injection internal combustion engine having an exhaust gas post-treatment system with a particle filter and a nitrogen oxide reduction catalytic converter, a plurality of internal combustion engine operating settings are provided, each having respective predefined values for predefined internal combustion engine operating parameters. A heating operating setting is set when the internal combustion engine is warming up, while a basic operating setting is set in the warmed-up state. When the temperature in the exhaust gas system exceeds a predefinable first value, the heating operating setting is changed over to the basic operating setting. In the warmed-up state, at least one further (third) operating setting, with an exhaust gas recirculation rate that is reduced compared to the basic operating setting, is provided in addition to the basic operating setting.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 1, 2014
    Assignee: Daimler AG
    Inventors: Bernd Christner, Alexander Kaiser, Berthold Keppeler, Holger Kissling, Markus Paule
  • Patent number: 8429897
    Abstract: In a method for operating an air-compressing fuel-injection internal combustion engine having an exhaust gas post-treatment system with a particle filter and a nitrogen oxide reduction catalytic converter, a plurality of internal combustion engine operating settings are provided, each having respective predefined values for predefined internal combustion engine operating parameters. A heating operating setting is set when the internal combustion engine is warming up, while a basic operating setting is set in the warmed-up state. When the temperature in the exhaust gas system exceeds a predefinable first value, the heating operating setting is changed over to the basic operating setting. In the warmed-up state, at least one further (third) operating setting, with an exhaust gas recirculation rate that is reduced compared to the basic operating setting, is provided in addition to the basic operating setting.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: April 30, 2013
    Assignee: Daimler AG
    Inventors: Bernd Christner, Alexander Kaiser, Berthold Keppeler, Holger Kissling, Markus Paule
  • Publication number: 20130011313
    Abstract: An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: Daimier AG
    Inventors: Brigitte BANDL-KONRAD, Andreas HERTZBERG, Bernd KRUTZSCH, Arno NOLTE, Markus PAULE, Stefan RENFFTLEN, Norbert WALDBUESSER, Michael WEIBEL, Gunter WENNINGER, Rolf WUNSCH
  • Patent number: 8297046
    Abstract: An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: October 30, 2012
    Assignee: Daimler AG
    Inventors: Brigitte Bandl-Konrad, Andreas Hertzberg, Bernd Krutzsch, Arno Nolte, Markus Paule, Stefan Renfftlen, Norbert Waldbuesser, Michel Weibel, Guenter Wenninger, Rolf Wunsch
  • Patent number: 8181445
    Abstract: The exhaust gas aftertreatment device according to the invention having a reforming unit for generating hydrogen by steam reforming, partial oxidation of hydrocarbons and/or mixed forms thereof is distinguished by the fact that the reforming unit is arranged directly in the main exhaust gas stream from an internal combustion engine. The steam and residual oxygen which are required for the reforming preferably originate from the exhaust gas. The step of providing the required reducing agents consists in briefly switching the internal combustion engine, which is predominantly operated in lean-burn mode and the exhaust gas from which is undergoing the aftertreatment, to rich-burn mode, allowing reforming by means of the reforming reactor according to the invention using the hydrocarbons that are present in the exhaust gas.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: May 22, 2012
    Assignee: Daimler AG
    Inventors: Frank Duvinage, Berthold Keppeler, Bernd Krutzsch, Markus Paule, Michel Weibel
  • Publication number: 20120067029
    Abstract: In a method for operating an air-compressing fuel-injection internal combustion engine having an exhaust gas post-treatment system with a particle filter and a nitrogen oxide reduction catalytic converter, a plurality of internal combustion engine operating settings are provided, each having respective predefined values for predefined internal combustion engine operating parameters. A heating operating setting is set when the internal combustion engine is warming up, while a basic operating setting is set in the warmed-up state. When the temperature in the exhaust gas system exceeds a predefinable first value, the heating operating setting is changed over to the basic operating setting. In the warmed-up state, at least one further (third) operating setting, with an exhaust gas recirculation rate that is reduced compared to the basic operating setting, is provided in addition to the basic operating setting.
    Type: Application
    Filed: November 30, 2011
    Publication date: March 22, 2012
    Applicant: Daimler AG
    Inventors: Bernd CHRISTNER, Alexander Kaiser, Berthold Keppeler, Holger Kissling, Markus Paule
  • Patent number: 8091339
    Abstract: In a method for operating an air-compressing fuel-injection internal combustion engine having an exhaust gas post-treatment system with a particle filter and a nitrogen oxide reduction catalytic converter, a plurality of internal combustion engine operating settings are provided, each having respective predefined values for predefined internal combustion engine operating parameters. A heating operating setting is set when the internal combustion engine is warming up, while a basic operating setting is set in the warmed-up state. When the temperature in the exhaust gas system exceeds a predefinable first value, the heating operating setting is changed over to the basic operating setting. In the warmed-up state, at least one further, (third) operating setting, with an exhaust gas recirculation rate that is reduced compared to the basic operating setting, is provided in addition to the basic operating setting.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: January 10, 2012
    Assignee: Daimler AG
    Inventors: Bernd Christner, Alexander Kaiser, Berthold Keppeler, Holger Kissling, Markus Paule
  • Patent number: 8061122
    Abstract: In a device and a method for removing nitrogen oxides from the exhaust of an internal combustion engine which is operated predominantly with an excess of air, the internal combustion engine is assigned an exhaust system having a nitrogen oxide reduction catalytic converter which comprises two catalytic converter parts, whose reducing agent filling levels can be determined. Metering of a reducing-agent-containing additive into the exhaust gas of the internal combustion engine takes place as a function of the reducing agent filling level of the first catalytic converter part and/or of the second catalytic converter part.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: November 22, 2011
    Assignee: Daimler AG
    Inventors: Marc Chaineux, Bernd Christner, Nicholas Fekete, Berthold Keppeler, Markus Paule
  • Publication number: 20110113753
    Abstract: A method for operating an exhaust gas treatment system that includes an SCR catalytic converter is provided. Either a model-based filling level regulation for achieving the target filling level or a model-based efficiency control for achieving the target efficiency is performed according to presettable values for certain operating variables such as a temperature of the exhaust gas or of the SCR catalytic converter.
    Type: Application
    Filed: July 22, 2009
    Publication date: May 19, 2011
    Applicant: Daimler AG
    Inventors: Bernd Christner, Markus Paule
  • Publication number: 20110113752
    Abstract: In a system with an SCR catalytic converter, a correction by a changeable long term adaption factor to a target dosing rate is provided for the model dosing rate and a correction by a changeable short term adaption factor to an assumed actual filling state for the ammonia filling level value. A dosing unit controllable by a control unit adds an ammonia-containing reducing agent to the exhaust gas and n exhaust gas enriched with ammonia according to the dosing is fed to the SCR catalytic converter. An ammonia filling level value for a filling level of ammonia stored in the SCR catalytic converter and a model dosing rate for dosing the reducing agent into the exhaust gas are calculated by a computer model.
    Type: Application
    Filed: July 22, 2009
    Publication date: May 19, 2011
    Applicant: Daimler AG
    Inventors: Bernd Christner, Uwe Hofmann, Alexander Kaiser, Markus Paule
  • Publication number: 20110005199
    Abstract: In a method for reducing the emission of nitrogen dioxide in a motor vehicle having an exhaust gas purification system having an SCR catalytic converter with adsorption centers for nitrogen oxides, an exhaust gas enriched with ammonia is supplied to the SCR catalytic converter above an operating temperature. Below the operating temperature, the exhaust gas supplied to the SCR catalytic converter is enriched with a material such that an adsorption of nitrogen oxides is inhibited at corresponding adsorption centers of the SCR catalytic converter. In order to reduce the overall NOx emissions below a first, predeterminable amount, an exhaust gas enriched with ammonia is supplied to the SCR catalytic converter and the NO2 portion of the total NOx emissions is reduced below a second, predeterminable amount in that NO2 is converted with hydrocarbons stored in the SCR catalytic converter.
    Type: Application
    Filed: September 9, 2008
    Publication date: January 13, 2011
    Inventors: Cyrill Kammer, Berthold Keppeler, Jochen Lahr, Markus Paule, Anke Traebert, Nicole Werquet, Axel Zuschlag
  • Publication number: 20110005204
    Abstract: An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.
    Type: Application
    Filed: September 9, 2010
    Publication date: January 13, 2011
    Applicant: Daimler AG
    Inventors: Brigitte Bandl-Konrad, Andreas Hertzberg, Bernd Krutzsch, Arno Nolte, Markus Paule, Stefan Renfftlen, Norbert Waldbuesser, Michel Weibel, Guenter Wenninger, Rolf Wunsch
  • Patent number: 7814747
    Abstract: An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: October 19, 2010
    Assignee: Daimler AG
    Inventors: Brigitte Bandl-Konrad, Andreas Hertzberg, Bernd Krutzsch, Arno Nolte, Markus Paule, Stefan Renfftlen, Norbert Waldbuesser, Michel Weibel, Guenter Wenninger, Rolf Wunsch