Patents by Inventor Martin E. Fermann

Martin E. Fermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140264031
    Abstract: The present invention relates to a trace gas detection system. At least one embodiment includes a frequency spectrum comprising a 1st comb and an enhancement cavity characterized by having a 2nd comb of spectral resonances. The enhancement cavity contains a sample gas for spectroscopic measurement. A dither mechanism is configured to modulate the relative spectral position between the combs at a dither frequency, fd. The dither mechanism, in conjunction with a feedback mechanism, stabilizes the location of said 1st comb lines with respect to the resonances of said 2nd comb over a time scale much greater than a dither period, Td=1/fd. A time-averaged output from the enhancement cavity is provided to a spectroscopic measurement tool, for example a Fourier transform spectrometer. The system is capable of detecting volatile organic compounds, endogenous compounds, and may be configured for cancer detection.
    Type: Application
    Filed: February 12, 2014
    Publication date: September 18, 2014
    Applicant: IMRA AMERICA, INC.
    Inventors: Martin E. FERMANN, Kevin F. Lee, Andrew A. Mills
  • Publication number: 20140233089
    Abstract: Modelocked fiber laser resonators may be coupled with optical amplifiers. An isolator optionally may separate the resonator from the amplifier. A reflective optical element on one end of the resonator having a relatively low reflectivity may be employed to couple light from the resonator to the amplifier. Enhanced pulse-width control may be provided with concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers may also be included in the laser cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth may be obtained by matching the dispersion value of the grating to the inverse of the dispersion of the intra-cavity fiber. Frequency comb sources may be constructed from such modelocked fiber oscillators. Low dispersion and an in-line interferometer that provides feedback may assist in controlling the frequency components output from the comb source.
    Type: Application
    Filed: November 26, 2013
    Publication date: August 21, 2014
    Applicant: IMRA America, Inc.
    Inventors: Martin E. Fermann, Ingmar Hartl, Gennady Imeshev
  • Publication number: 20140219298
    Abstract: The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated, including highly integrated configurations. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. The oscillators are configured to operate at slightly different repetition rates, such that a difference ?fr in repetition rates is small compared to the values fr1 and fr2 of the repetition rates of the oscillators. The CDSL system also includes a non-linear frequency conversion section optically connected to each oscillator. The section includes a non-linear optical element generating a frequency converted spectral output having a spectral bandwidth and a frequency comb comprising harmonics of the oscillator repetition rates.
    Type: Application
    Filed: April 8, 2014
    Publication date: August 7, 2014
    Applicant: IMRA AMERICA, INC.
    Inventors: Martin E. FERMANN, Ingmar HARTL
  • Patent number: 8792525
    Abstract: Compact optical frequency sources are described. The comb source may include an intra-cavity optical element having a multi-material integrated structure with an electrically controllable active region. The active region may comprise a thin film. By way of example, the thin film and an insulating dielectric material disposed between two electrodes can provide for rapid loss modulation. In some embodiments the thin film may comprise graphene. In various embodiments of a frequency comb laser, rapid modulation of the CEO frequency can be implemented via electric modulation of the transmission or reflection loss of an additional optical element, which can be the saturable absorber itself. In another embodiment, the thin film can also be used as a saturable absorber in order to facilitate passive modelocking. In some implementations the optical element may be formed on a cleaved or polished end of an optical fiber.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: July 29, 2014
    Assignees: The Regents of the University of Colorado, a body corporate, Imra America, Inc.
    Inventors: Martin E. Fermann, Thomas R. Schibli, Ingmar Hartl
  • Publication number: 20140202994
    Abstract: Compact high brightness light sources for the mid and far IR spectral region, and exemplary applications are disclosed based on passively mode locked Tm fiber comb lasers. In at least one embodiment the coherence of the comb sources is increased in a system utilizing an amplified single-frequency laser to pump the Tm fiber comb laser. The optical bandwidth generated by the passively mode locked Tm fiber comb laser is further decreased by using simultaneous 2nd and 3rd order dispersion compensation using either appropriate chirped fiber Bragg gratings for dispersion compensation, or fibers with appropriately selected values of 2nd and 3rd order dispersion. Fibers with large anomalous values of third order dispersion, or fibers with large numerical apertures, for example fibers having air-holes formed in the fiber cladding may be utilized.
    Type: Application
    Filed: March 21, 2014
    Publication date: July 24, 2014
    Applicant: IMRA AMERICA, INC.
    Inventor: Martin E. FERMANN
  • Publication number: 20140192403
    Abstract: A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity.
    Type: Application
    Filed: February 6, 2014
    Publication date: July 10, 2014
    Applicant: IMRA America, Inc.
    Inventors: Martin E. Fermann, Donald J. Harter
  • Patent number: 8773754
    Abstract: An optimized Yb: doped fiber mode-locked oscillator and fiber amplifier system for seeding Nd: or Yb: doped regenerative amplifiers. The pulses are generated in the Yb: or Nd: doped fiber mode-locked oscillator, and may undergo spectral narrowing or broadening, wavelength converting, temporal pulse compression or stretching, pulse attenuation and/or lowering the repetition rate of the pulse train. The conditioned pulses are subsequently coupled into an Yb: or Nd: fiber amplifier. The amplified pulses are stretched before amplification in the regenerative amplifier that is based on an Nd: or Yb: doped solid-state laser material, and then recompressed for output.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: July 8, 2014
    Assignee: IMRA America, Inc.
    Inventors: Donald J. Harter, Gyu C. Cho, Martin E. Fermann, Ingmar Hartl
  • Publication number: 20140185065
    Abstract: Systems and methods for providing laser texturing of solid substrates are disclosed. The texturing may be used to provide grayscale images obtainable from substrates, which may include steel, aluminum, glass, and silicon. In some embodiments, images may be obtainable from the substrate by modifying the reflective, diffractive, and/or absorptive features of the substrate or the substrate surface by forming random, periodic, and/or semi-periodic micro-structure features on the substrate (or substrate surface) by an ultrafast laser pulse train. The ultrafast pulse train may be modulated in order to vary, for example, optical exposure time, pulse train intensity, laser polarization, laser wavelength, or a combination of the aforementioned. The ultrafast pulse train and the substrate may be scanned with respect to each other to provide different optical energies to different regions of the substrate (or substrate surface).
    Type: Application
    Filed: March 5, 2014
    Publication date: July 3, 2014
    Applicant: IMRA America, inc.
    Inventors: Lawrence Shah, Martin E. Fermann
  • Patent number: 8761211
    Abstract: A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: June 24, 2014
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Donald J. Harter
  • Patent number: 8736954
    Abstract: High power parallel fiber arrays for the amplification of high peak power pulses are described. Fiber arrays based on individual fiber amplifiers as well as fiber arrays based on multi-core fibers can be implemented. The optical phase between the individual fiber amplifier elements of the fiber array is measured and controlled using a variety of phase detection and compensation techniques. High power fiber array amplifiers can be used for EUV and X-ray generation as well as pumping of parametric amplifiers.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: May 27, 2014
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Ingmar Hartl, Andrius Marcinkevicius, Liang Dong
  • Patent number: 8699532
    Abstract: The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated, including highly integrated configurations. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. The oscillators are configured to operate at slightly different repetition rates, such that a difference ?fr in repetition rates is small compared to the values fr1 and fr2 of the repetition rates of the oscillators. The CDSL system also includes a non-linear frequency conversion section optically connected to each oscillator. The section includes a non-linear optical element generating a frequency converted spectral output having a spectral bandwidth and a frequency comb comprising harmonics of the oscillator repetition rates.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: April 15, 2014
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Ingmar Hartl
  • Patent number: 8670151
    Abstract: Systems and methods for providing laser texturing of solid substrates are disclosed. The texturing may be used to provide grayscale images obtainable from substrates, which may include steel, aluminum, glass, and silicon. In some embodiments, images may be obtainable from the substrate by modifying the reflective, diffractive, and/or absorptive features of the substrate or the substrate surface by forming random, periodic, and/or semi-periodic micro-structure features on the substrate (or substrate surface) by an ultrafast laser pulse train. The ultrafast pulse train may be modulated in order to vary, for example, optical exposure time, pulse train intensity, laser polarization, laser wavelength, or a combination of the aforementioned. The ultrafast pulse train and the substrate may be scanned with respect to each other to provide different optical energies to different regions of the substrate (or substrate surface).
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 11, 2014
    Assignee: IMRA America, Inc.
    Inventors: Lawrence Shah, Martin E. Fermann
  • Publication number: 20140044139
    Abstract: Various embodiments include large cores fibers that can propagate few modes or a single mode while introducing loss to higher order modes. Some of these fibers are holey fibers that comprising cladding features such as air-holes. Additional embodiments described herein include holey rods. The rods and fibers may be used in many optical systems including optical amplification systems, lasers, short pulse generators, Q-switched lasers, etc. and may be used for example for micromachining.
    Type: Application
    Filed: October 15, 2013
    Publication date: February 13, 2014
    Applicant: IMRA America, Inc.
    Inventors: Liang Dong, William Wong, Martin E. Fermann
  • Publication number: 20140036939
    Abstract: A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Peak power handling capability of fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive pulse stretching in the presence of self-phase modulation and gain results in the formation of high-power parabolic pulses. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. Positive dispersion optical amplifiers are used to improve transmission characteristics.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 6, 2014
    Applicant: IMRA AMERICA, INC.
    Inventor: Martin E. FERMANN
  • Patent number: 8630321
    Abstract: Methods and apparatuses for performing temporal scanning using ultra-short pulse width lasers in which only minimal (micro-scale) mechanical movement is required, and related methods for obtaining high-accuracy timing calibration, on the order of femtoseconds, are disclosed. A dual laser system is disclosed in which the cavity of one or more of the lasers is dithered using a piezoelectric element. A Fabry-Perot etalon generates a sequence of timing pulses used in conjunction with a laser beam produced by the laser having the dithered laser cavity. A correlator correlates a laser pulse from one of the lasers with the sequence of timing pulses to produce a calibrated time scale. The invention is applicable to applications requiring rapid scanning and time calibration, including metrology, characterization of charge dynamics in semiconductors, electro-optic testing of ultrafast electronic and optoelectronic devices, optical time domain reflectometry, and electro-optic sampling oscilloscopes.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: January 14, 2014
    Assignee: Imra America, Inc.
    Inventors: Gregg D. Sucha, Martin E. Fermann, Donald J. Harter
  • Patent number: 8599473
    Abstract: Modelocked fiber laser resonators may be coupled with optical amplifiers. An isolator optionally may separate the resonator from the amplifier. A reflective optical element on one end of the resonator having a relatively low reflectivity may be employed to couple light from the resonator to the amplifier. Enhanced pulse-width control may be provided with concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers may also be included in the laser cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth may be obtained by matching the dispersion value of the grating to the inverse of the dispersion of the intra-cavity fiber. Frequency comb sources may be constructed from such modelocked fiber oscillators. Low dispersion and an in-line interferometer that provides feedback may assist in controlling the frequency components output from the comb source.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: December 3, 2013
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Ingmar Hartl, Gennady Imeshev
  • Publication number: 20130301115
    Abstract: Various embodiments described herein comprise a laser and/or an amplifier system including a doped gain fiber having ytterbium ions in a phosphosilicate glass. Various embodiments described herein increase pump absorption to at least about 1000 dB/m-9000 dB/m. The use of these gain fibers provide for increased peak-powers and/or pulse energies. The various embodiments of the doped gain fiber having ytterbium ions in a phosphosilicate glass exhibit reduced photo-darkening levels compared to photo-darkening levels obtainable with equivalent doping levels of an ytterbium doped silica fiber.
    Type: Application
    Filed: July 16, 2013
    Publication date: November 14, 2013
    Inventors: Liang Dong, Martin E. Fermann, Hugh McKay, Libin Fu, Shigeru Suzuki
  • Publication number: 20130293947
    Abstract: By compensating polarization mode-dispersion as well chromatic dispersion in photonic crystal fiber pulse compressors, high pulse energies can be obtained from all-fiber chirped pulse amplification systems. By inducing third-order dispersion in fiber amplifiers via self-phase modulation, the third-order chromatic dispersion from bulk grating pulse compressors can be compensated and the pulse quality of hybrid fiber/bulk chirped pulse amplification systems can be improved. Finally, by amplifying positively chirped pulses in negative dispersion fiber amplifiers, a low noise wavelength tunable seed source via anti-Stokes frequency shifting can be obtained.
    Type: Application
    Filed: July 8, 2013
    Publication date: November 7, 2013
    Inventors: Martin E. Fermann, Gennady Imeshev, Gyu C. Cho, Zhenlin Liu, Donald J. Harter
  • Publication number: 20130293946
    Abstract: The present invention relates to frequency rulers. At least one embodiment includes a mode locked pump source operated at pulse repetition rate, and a pump output having a pump carrier envelope offset frequency. A nonlinear optical system outputs a frequency ruler spectrum comprising individual frequency modes. The frequency modes may be characterized by a frequency spacing which is an integer multiple of the repetition rate and by distinct ruler carrier envelope offset frequencies which exhibit at least one discontinuity across the frequency output. The ruler carrier envelope offset frequencies are substantially locked to the carrier envelope offset frequency of the pump laser. One preferred embodiment includes a frequency doubled, doubly resonant, non-degenerate OPO (DNOPO), a supercontinuum generation (SC) stage and at least one reference laser arranged downstream from a Tm fiber-based pump source. A plurality of beat signals generated therefrom provide for stabilization of the system.
    Type: Application
    Filed: April 30, 2013
    Publication date: November 7, 2013
    Applicant: IMRA AMERICA, Inc.
    Inventors: Martin E. FERMANN, Ingmar HARTL
  • Publication number: 20130293941
    Abstract: The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.
    Type: Application
    Filed: July 5, 2013
    Publication date: November 7, 2013
    Inventors: Donald J. HARTER, Gyu C. CHO, Zhenlin LIU, Martin E. FERMANN, Xinhua GU, Salvatore F. NATI, Lawrence SHAH, Ingmar HARTL, Mark BENDETT