Patents by Inventor Martin E. Fermann

Martin E. Fermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120200439
    Abstract: Frequency standards based on mode-locked fiber lasers, fiber amplifiers and fiber-based ultra-broad bandwidth light sources, and applications of the same.
    Type: Application
    Filed: April 13, 2012
    Publication date: August 9, 2012
    Applicant: IMRA AMERICA, INC.
    Inventors: Ingmar HARTL, Martin E. FERMANN
  • Patent number: 8237122
    Abstract: The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated, including highly integrated configurations. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. The oscillators are configured to operate at slightly different repetition rates, such that a difference ?fr in repetition rates is small compared to the values fr1 and fr2 of the repetition rates of the oscillators. The CDSL system also includes a non-linear frequency conversion section optically connected to each oscillator. The section includes a non-linear optical element generating a frequency converted spectral output having a spectral bandwidth and a frequency comb comprising harmonics of the oscillator repetition rates.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: August 7, 2012
    Assignee: Imra America, Inc.
    Inventors: Martin E. Fermann, Ingmar Hartl
  • Patent number: 8228597
    Abstract: By compensating polarization mode-dispersion as well chromatic dispersion in photonic crystal fiber pulse compressors, high pulse energies can be obtained from all-fiber chirped pulse amplification systems. By inducing third-order dispersion in fiber amplifiers via self-phase modulation, the third-order chromatic dispersion from bulk grating pulse compressors can be compensated and the pulse quality of hybrid fiber/bulk chirped pulse amplification systems can be improved. Finally, by amplifying positively chirped pulses in negative dispersion fiber amplifiers, low noise wavelength tunable seed source via anti-Stokes frequency shifting can be obtained.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: July 24, 2012
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Gennady Imeshev, Gyu C. Cho, Zhenlin Liu, Donald J. Harter
  • Patent number: 8208196
    Abstract: Various embodiments include modelocked fiber laser resonators that may be coupled with optical amplifiers. An isolator may separate the laser resonator from the amplifier, although certain embodiments exclude such an isolator. A reflective optical element on one end of the resonator having a relatively low reflectivity may be employed to couple light from the laser resonator to the amplifier. Enhanced pulse-width control may be provided with concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers may be also be included in the laser cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth may be obtained by matching the dispersion value of the fiber Bragg grating to the inverse of the dispersion of the intra-cavity fiber. Frequency comb sources may be constructed from such modelocked fiber oscillators.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: June 26, 2012
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Ingmar Hartl, Gennady Imeshev
  • Publication number: 20120145902
    Abstract: The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated, including highly integrated configurations. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. The oscillators are configured to operate at slightly different repetition rates, such that a difference ?fr in repetition rates is small compared to the values fr1 and fr2 of the repetition rates of the oscillators. The CDSL system also includes a non-linear frequency conversion section optically connected to each oscillator. The section includes a non-linear optical element generating a frequency converted spectral output having a spectral bandwidth and a frequency comb comprising harmonics of the oscillator repetition rates.
    Type: Application
    Filed: February 17, 2012
    Publication date: June 14, 2012
    Applicant: IMRA AMERICA, INC
    Inventors: Martin E. FERMANN, Ingmar Hartl
  • Patent number: 8199398
    Abstract: High power parallel fiber arrays for the amplification of high peak power pulses are described. Fiber arrays based on individual fiber amplifiers as well as fiber arrays based on multi-core fibers can be implemented. The optical phase between the individual fiber amplifier elements of the fiber array is measured and controlled using a variety of phase detection and compensation techniques. High power fiber array amplifiers can be used for EUV and X-ray generation as well as pumping of parametric amplifiers.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: June 12, 2012
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Ingmar Hartl, Andrius Marcinkevicius, Liang Dong
  • Patent number: 8170387
    Abstract: Frequency standards based on mode-locked fiber lasers, fiber amplifiers and fiber-based ultra-broad bandwidth light sources, and applications of the same.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: May 1, 2012
    Assignee: IMRA America, Inc.
    Inventors: Ingmar Hartl, Martin E Fermann
  • Publication number: 20120099609
    Abstract: Various embodiments include large cores fibers that can propagate few modes or a single mode while introducing loss to higher order modes. Some of these fibers are holey fibers that comprising cladding features such as air-holes. Additional embodiments described herein include holey rods. The rods and fibers may be used in many optical systems including optical amplification systems, lasers, short pulse generators, Q-switched lasers, etc. and may be used for example for micromachining.
    Type: Application
    Filed: September 26, 2011
    Publication date: April 26, 2012
    Applicant: IMRA AMERICA, INC.
    Inventors: Liang Dong, William Wong, Martin E. Fermann
  • Publication number: 20120081694
    Abstract: The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated, including highly integrated configurations. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. The oscillators are configured to operate at slightly different repetition rates, such that a difference ?fr in repetition rates is small compared to the values fr1 and fr2 of the repetition rates of the oscillators. The CDSL system also includes a non-linear frequency conversion section optically connected to each oscillator. The section includes a non-linear optical element generating a frequency converted spectral output having a spectral bandwidth and a frequency comb comprising harmonics of the oscillator repetition rates.
    Type: Application
    Filed: December 12, 2011
    Publication date: April 5, 2012
    Applicant: IMRA AMERICA, INC.
    Inventors: Martin E. FERMANN, Ingmar HARTL
  • Patent number: 8130799
    Abstract: The present invention is directed to providing an environmentally stable, ultra-short pulse source. Exemplary embodiments relate to passively modelocked ultra-short fiber lasers which are insensitive to temperature variations and which possess only negligible sensitivity to pressure variations. Further, exemplary embodiments can be implemented in a cost-effective manner which render them commercially practical in unlimited applications. Arbitrary fiber lengths (e.g., on the order of 1 millimeter to 1 kilometer, or greater) can be used to provide an ultra-short pulse with a cost-effective architecture which is commercially practical.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: March 6, 2012
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Donald J. Harter
  • Patent number: 8120778
    Abstract: The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated, including highly integrated configurations. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. The oscillators are configured to operate at slightly different repetition rates, such that a difference ?fr in repetition rates is small compared to the values fr1 and fr2 of the repetition rates of the oscillators. The CDSL system also includes a non-linear frequency conversion section optically connected to each oscillator. The section includes a non-linear optical element generating a frequency converted spectral output having a spectral bandwidth and a frequency comb comprising harmonics of the oscillator repetition rates.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: February 21, 2012
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Ingmar Hartl
  • Patent number: 8072678
    Abstract: A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: December 6, 2011
    Assignee: Imra America, Inc.
    Inventors: Martin E. Fermann, Almantas Galvanauskas, Donald J. Harter
  • Publication number: 20110280262
    Abstract: A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings, resulting in a further increase of the energy handling ability of the fiber amplifiers.
    Type: Application
    Filed: July 21, 2011
    Publication date: November 17, 2011
    Applicant: IMRA AMERICA, INC.
    Inventors: Martin E. Fermann, Almantas GALVANAUSKAS, Donald J. HARTER
  • Patent number: 8055109
    Abstract: Various embodiments include large cores fibers that can propagate few modes or a single mode while introducing loss to higher order modes. Some of these fibers are holey fibers that comprising cladding features such as air-holes. Additional embodiments described herein include holey rods. The rods and fibers may be used in many optical systems including optical amplification systems, lasers, short pulse generators, Q-switched lasers, etc. and may be used for example for micromachining.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: November 8, 2011
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, William Wong, Martin E. Fermann
  • Patent number: 8036253
    Abstract: An intracavity resonant Fabry-Perot saturable absorber (R-FPSA) induces modelocking in a laser such as a fiber laser. An optical limiter such as a two photon absorber (TPA) can be used in conjunction with the R-FPSA, so that Q-switching is inhibited, resulting in laser output that is cw modelocked. By using both an R-FPSA and a TPA, the Q-switched modelocked behavior of a fiber laser is observed to evolve into cw modelocking.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: October 11, 2011
    Assignee: IMRA America, Inc.
    Inventors: Min Jiang, Donald J. Harter, Gregg D. Sucha, Martin E. Fermann
  • Patent number: 8031396
    Abstract: A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: October 4, 2011
    Assignee: Imra America, Inc.
    Inventors: Martin E. Fermann, Almantas Galvanauskas, Donald J. Harter
  • Patent number: 8023538
    Abstract: Embodiments of parametric chirped pulse amplifiers seeded with a single pulse source which is subsequently split into a signal arm and a pump arm with appropriate signal and pump conditioning stages are disclosed, which advantageously improve the utility of high average power and/or high energy ultrafast amplification systems. In various embodiments, at least one of the signal or the pump conditioning stages is non-linear, allowing for a great range of seed sources to be utilized. Chirped pulse amplification in the pump conditioning stage may be used to simplify the parametric amplification of pulses with pulse widths of the order of 10 fs. The parametric pump can include coherently combined fiber arrays, hybrid fiber solid-state amplifiers, and/or cryogenically cooled solid-state amplifiers to increase or optimize the energy extraction of high average powers.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: September 20, 2011
    Assignee: IMRA America, Inc.
    Inventors: Andrius Marcinkevicius, Martin E. Fermann
  • Publication number: 20110200061
    Abstract: An optimized Yb: doped fiber mode-locked oscillator and fiber amplifier system for seeding Nd: or Yb: doped regenerative amplifiers. The pulses are generated in the Yb: or Nd: doped fiber mode-locked oscillator, and may undergo spectral narrowing or broadening, wavelength converting, temporal pulse compression or stretching, pulse attenuation and/or lowering the repetition rate of the pulse train. The conditioned pulses are subsequently coupled into an Yb: or Nd: fiber amplifier. The amplified pulses are stretched before amplification in the regenerative amplifier that is based on an Nd: or Yb: doped solid-state laser material, and then recompressed for output.
    Type: Application
    Filed: March 22, 2011
    Publication date: August 18, 2011
    Applicant: IMRA AMERICA, INC.
    Inventors: Donald J. HARTER, Gyu C. CHO, Martin E. FERMANN, Ingmar HARTL
  • Patent number: 7995270
    Abstract: The invention describes techniques for the control of the spatial as well as spectral beam quality of multi-mode fiber amplification of high peak power pulses as well as using such a configuration to replace the present diode-pumped, Neodynium based sources. Perfect spatial beam-quality can be ensured by exciting the fundamental mode in the multi-mode fibers with appropriate mode-matching optics and techniques. The loss of spatial beam-quality in the multi-mode fibers along the fiber length can be minimized by using multi-mode fibers with large cladding diameters. Near diffraction-limited coherent multi-mode amplifiers can be conveniently cladding pumped, allowing for the generation of high average power. Moreover, the polarization state in the multi-mode fiber amplifiers can be preserved by implementing multi-mode fibers with stress producing regions or elliptical fiber cores These lasers find application as a general replacement of Nd: based lasers, especially Nd:YAG lasers.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: August 9, 2011
    Assignee: IMRA America, Inc.
    Inventors: Donald J. Harter, Martin E. Fermann, Ferenc Raksi, Almantas Galvanauskas
  • Publication number: 20110170565
    Abstract: An intracavity resonant Fabry-Perot saturable absorber (R-FPSA) induces modelocking in a laser such as a fiber laser. An optical limiter such as a two photon absorber (TPA) can be used in conjunction with the R-FPSA, so that Q-switching is inhibited, resulting in laser output that is cw modelocked. By using both an R-FPSA and a TPA, the Q-switched modelocked behavior of a fiber laser is observed to evolve into cw modelocking.
    Type: Application
    Filed: March 21, 2011
    Publication date: July 14, 2011
    Applicant: IMRA AMERICA, INC.
    Inventors: Min Jiang, Donald J. Harter, Gregg D. Sucha, Martin E. Fermann