Patents by Inventor Martin J. Goldberg

Martin J. Goldberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210380968
    Abstract: Aspects of the invention relate to methods, compositions for designing and producing a target nucleic acid. In particular, aspects of the invention relate to the multiplex synthesis of target polynucleotides.
    Type: Application
    Filed: August 25, 2021
    Publication date: December 9, 2021
    Applicant: Gen9, Inc.
    Inventors: Joseph Jacobson, Daniel Schindler, Ishtiaq Saaem, Scott S. Lawton, Martin J. Goldberg, Michael E. Hudson, Li-Yun A. Kung
  • Patent number: 11130948
    Abstract: Aspects of the invention relate to methods, compositions for designing and producing a target nucleic acid. In particular, aspects of the invention relate to the multiplex synthesis of target polynucleotides.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: September 28, 2021
    Assignee: Gen9, Inc.
    Inventors: Joseph Jacobson, Daniel Schindler, Ishtiaq E. Saaem, Scott S. Lawton, Martin J. Goldberg, Michael E. Hudson, Li-yun A. Kung
  • Publication number: 20210139888
    Abstract: Methods and compositions relate to the sorting and cloning of high fidelity nucleic acids using high throughput sequencing. Specifically, nucleic acid molecules having the desired predetermined sequence can be sorted from a pool comprising a plurality of nucleic acids having correct and incorrect sequences.
    Type: Application
    Filed: January 19, 2021
    Publication date: May 13, 2021
    Applicant: Gen9, Inc.
    Inventors: Joseph Jacobson, Martin J. Goldberg, Li-Yun A. Kung, Daniel Schindler, Michael E. Hudson
  • Patent number: 10927369
    Abstract: Methods and compositions relate to the sorting and cloning of high fidelity nucleic acids using high throughput sequencing. Specifically, nucleic acid molecules having the desired predetermined sequence can be sorted from a pool comprising a plurality of nucleic acids having correct and incorrect sequences.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: February 23, 2021
    Assignee: Gen9, Inc.
    Inventors: Joseph Jacobson, Martin J. Goldberg, Li-Yun A. Kung, Daniel Schindler, Michael E. Hudson
  • Publication number: 20190203201
    Abstract: Aspects of the invention relate to methods, compositions for designing and producing a target nucleic acid. In particular, aspects of the invention relate to the multiplex synthesis of target polynucleotides.
    Type: Application
    Filed: March 12, 2019
    Publication date: July 4, 2019
    Inventors: Joseph Jacobson, Daniel Schindler, Ishtiaq E. Saaem, Scott S. Lawton, Martin J. Goldberg, Michael E. Hudson, Li-yun A. Kung
  • Patent number: 10273471
    Abstract: Aspects of the invention relate to methods, compositions for designing and producing a target nucleic acid. In particular, aspects of the invention relate to the multiplex synthesis of target polynucleotides.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 30, 2019
    Assignee: Gen 9, Inc.
    Inventors: Joseph Jacobson, Daniel Schindler, Ishtiaq Saaem, Scott Lawton, Martin J. Goldberg, Michael E. Hudson, Li-yun A. Kung
  • Publication number: 20190100751
    Abstract: Methods and compositions relate to the sorting and cloning of high fidelity nucleic acids using high throughput sequencing. Specifically, nucleic acid molecules having the desired predetermined sequence can be sorted from a pool comprising a plurality of nucleic acids having correct and incorrect sequences.
    Type: Application
    Filed: July 18, 2018
    Publication date: April 4, 2019
    Applicant: Gen9, Inc.
    Inventors: Joseph Jacobson, Martin J. Goldberg, Li-Yun A. Kung, Daniel Schindler, Michael E. Hudson
  • Patent number: 10081807
    Abstract: Methods and compositions relate to the sorting and cloning of high fidelity nucleic acids using high throughput sequencing. Specifically, nucleic acid molecules having the desired predetermined sequence can be sorted from a pool comprising a plurality of nucleic acids having correct and incorrect sequences.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: September 25, 2018
    Assignee: Gen9, Inc.
    Inventors: Joseph Jacobson, Martin J. Goldberg, Li-yun A. Kung, Daniel Schindler, Michael E. Hudson
  • Publication number: 20150376602
    Abstract: Aspects of the invention relate to methods, compositions for designing and producing a target nucleic acid. In particular, aspects of the invention relate to the multiplex synthesis of target polynucleotides.
    Type: Application
    Filed: March 13, 2014
    Publication date: December 31, 2015
    Inventors: Joseph Jacobson, Daniel Schindler, Ishtiaq Saaem, Scott Lawton, Martin J. Goldberg, Michael E. Hudson, Li-yun A. Kung
  • Patent number: 8859196
    Abstract: The present invention provides an array of polymers and methods of forming arrays of polymers by providing a substrate having a first layer including one or more dielectric coatings on a solid support and a second layer including a plurality of polymers disposed on the first layer. The invention also provides methods for forming an array of polymers on a substrate using light-directed synthesis by providing a substrate having a first layer including one or more dielectric coatings on a solid support, derivatizing the first layer by contacting the first layer with a silanation reagent, and a second layer disposed on said first layer wherein the second layer includes functional groups protected with a photolabile protecting group.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: October 14, 2014
    Assignee: Affymetrix, Inc.
    Inventors: Mark O. Trulson, Glenn H. McGall, Bei-Shen Sywe, Lisa T. Kajisa, Dana Truong, Richard P. Rava, Martin J. Goldberg
  • Publication number: 20140141982
    Abstract: Methods and compositions relate to the sorting and cloning of high fidelity nucleic acids using high throughput sequencing. Specifically, nucleic acid molecules having the desired predetermined sequence can be sorted from a pool comprising a plurality of nucleic acids having correct and incorrect sequences.
    Type: Application
    Filed: April 24, 2013
    Publication date: May 22, 2014
    Applicant: Gen9, Inc.
    Inventors: Joseph Jacobson, Martin J. Goldberg, Li-yun A. Kung, Daniel Schindler, Michael E. Hudson
  • Patent number: 8697334
    Abstract: An encoded microparticle having a spatial code is provided; and a set of encoded microparticles possessing subsets each provided with a distinguishable spatial code, wherein the codes comply with a pre-determined coding scheme. Presented are also methods of using the encoded microparticles in various biological assays, such as various multiplex assays and visualizing them by creating a digital image of the encoded microparticles and determining whether false positives are present. Further are provided methods of manufacture of the encoded microparticles which employ ferromagnetic nanoparticles applied using spin-on-glass techniques.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: April 15, 2014
    Assignee: Affymetrix, Inc.
    Inventors: Randall J. True, Martin J. Goldberg, Michael Ru, Michael P. Mittmann
  • Patent number: 8637434
    Abstract: The present invention provides novel processes for the large scale preparation of arrays of polymer sequences wherein each array includes a plurality of different, positionally distinct polymer sequences having known monomer sequences. The methods of the invention combine high throughput process steps with high resolution photolithographic techniques in the manufacture of polymer arrays.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: January 28, 2014
    Assignee: Affymetrix, Inc.
    Inventors: Martin J. Goldberg, Martin Diggelman, Earl A. Hubbell, Glenn H. McGall, Ngo Nam, MacDonald S. Morris, Melvin Yamamoto, Jennifer Tan, Richard Rava
  • Patent number: 8445201
    Abstract: A method, device and system for hybridizing a target oligonucleotide to at least one array comprising a plurality of mixing beads are provided. A target solution is mixed by agitating the mixing beads while the target oligonucleotides are hybridizing to the complementary probes on the array. In another embodiment, a permeable barrier contains the mixing beads, thereby preventing them from contacting the array surface.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: May 21, 2013
    Assignee: Affymetrix, Inc.
    Inventors: Bellon Laurent, Martin J. Goldberg, Robert J. Lipshutz, Kaliyur Narasimhan
  • Patent number: 8318427
    Abstract: Protective groups which may be cleaved with an activatable deprotecting reagents are employed to achieve a highly sensitive, high resolution, combinatorial synthesis of pattern arrays of diverse polymers. In preferred embodiments of the instant invention, the activatable deprotecting reagent is a photoacid generator and the protective groups are DMT for nucleic acids and tBOC for amino acids. This invention has a wide variety of applications and is particularly useful for the solid phase combinatorial synthesis of polymers.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: November 27, 2012
    Assignee: Affymetrix, Inc.
    Inventors: Robert G. Kuimelis, Glenn H. McGall, Martin J. Goldberg, Guangyu Xu
  • Patent number: 8309496
    Abstract: The present invention provides novel processes for the large scale preparation of arrays of polymer sequences wherein each array includes a plurality of different, positionally distinct polymer sequences having known monomer sequences. The methods of the invention combine high throughput process steps with high resolution photolithographic techniques in the manufacture of polymer arrays.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: November 13, 2012
    Assignee: Affymetrix, Inc.
    Inventors: Martin J. Goldberg, Martin Diggelman, Earl A. Hubbell, Glenn H. McGall, Nam Quoc Ngo, MacDonald Morris, Melvin Yamamoto, Jennifer Tan, Richard P. Rava
  • Publication number: 20120196381
    Abstract: An encoded microparticle having a spatial code is provided; and a set of encoded microparticles possessing subsets each provided with a distinguishable spatial code, wherein the codes comply with a pre-determined coding scheme. Presented are also methods of using the encoded microparticles in various biological assays, such as various multiplex assays and visualizing them by creating a digital image of the encoded microparticles and determining whether false positives are present. Further are provided methods of manufacture of the encoded microparticles which employ ferromagnetic nanoparticles applied using spin-on-glass techniques.
    Type: Application
    Filed: December 23, 2011
    Publication date: August 2, 2012
    Applicant: Affymetrix, Inc.
    Inventors: Randall J. True, Martin J. Goldberg, Michael Ru, Michael P. Mittmann
  • Patent number: 8114584
    Abstract: The present invention provides an array of polymers and methods of forming arrays of polymers by providing a substrate having a first layer including one or more dielectric coatings on a solid support and a second layer including a plurality of polymers disposed on the first layer. The invention also provides methods for forming an array of polymers on a substrate using light-directed synthesis by providing a substrate having a first layer including one or more dielectric coatings on a solid support, derivatizing the first layer by contacting the first layer with a silanation reagent, and a second layer disposed on said first layer wherein the second layer includes functional groups protected with a photolabile protecting group.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: February 14, 2012
    Assignee: Affymetrix, Inc.
    Inventors: Mark O. Trulson, Glenn H. McGall, Bei-Shen Sywe, Lisa T. Kajisa, Dana Truong, Rich P. Rava, Martin J. Goldberg
  • Publication number: 20120035083
    Abstract: The present invention provides an array of polymers and methods of forming arrays of polymers by providing a substrate having a first layer including one or more dielectric coatings on a solid support and a second layer including a plurality of polymers disposed on the first layer. The invention also provides methods for forming an array of polymers on a substrate using light-directed synthesis by providing a substrate having a first layer including one or more dielectric coatings on a solid support, derivatizing the first layer by contacting the first layer with a silanation reagent, and a second layer disposed on said first layer wherein the second layer includes functional groups protected with a photolabile protecting group.
    Type: Application
    Filed: October 18, 2011
    Publication date: February 9, 2012
    Applicant: AFFYMETRIX, INC.
    Inventors: Mark O. Trulson, Martin J. Goldberg, Glenn H. McGall, Bei-Shen Sywe, Lisa T. Kajisa, Richard P. Rava, Dana Truong
  • Publication number: 20120010108
    Abstract: Protective groups which may be cleaved with an activatable deprotecting reagents are employed to achieve a highly sensitive, high resolution, combinatorial synthesis of pattern arrays of diverse polymers. In preferred embodiments of the instant invention, the activatable deprotecting reagent is a photoacid generator and the protective groups are DMT for nucleic acids and tBOC for amino acids. This invention has a wide variety of applications and is particularly useful for the solid phase combinatorial synthesis of polymers.
    Type: Application
    Filed: September 21, 2011
    Publication date: January 12, 2012
    Applicant: Affymetrix, INC.
    Inventors: Robert G. Kuimelis, Glenn H. McGall, Martin J. Goldberg, Guangyu Xu